
BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Dissertation

MEASURING AND IMPROVING THE PERFORMANCE

OF THE BITCOIN NETWORK

by

MUHAMMAD ANAS IMTIAZ

B.Sc., National University of Computer & Emerging Sciences, 2014

M.S., Boston University, 2022

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2022

© 2022 by

MUHAMMAD ANAS IMTIAZ

All rights reserved

Approved by

First Reader

David Starobinski, Ph.D.
Professor of Electrical and Computer Engineering
Professor of Systems Engineering

Second Reader

Ari Trachtenberg, Ph.D.
Professor of Electrical and Computer Engineering
Professor of Systems Engineering

Third Reader

Gianluca Stringhini, Ph.D.
Assistant Professor of Electrical and Computer Engineering

Fourth Reader

Alan Liu, Ph.D.
Assistant Professor of Electrical and Computer Engineering
Assistant Professor of Computer Science

“The problem, you see, when you ask why something happens, how does
a person answer why something happens? . . . when you explain a why,
you have to be in some framework that you allow something to be true.

Otherwise, you’re perpetually asking why. . .. If you try to follow
anything up, you go deeper and deeper in various directions. . .. I’m

telling you how difficult the why question is. You have to know what it
is that you’re permitted to understand and allow to be understood and

known, and what it is you’re not.”

Richard Feynman on Magnets (1983)

iv

Acknowledgments

Alhamdulillah! What amazing four-something years these have been! I have learnt

a great deal ś both academic and otherwise ś during my post-graduate journey at

Boston University and I hope my work will make positive impact(s) in the world of

computer engineering. I am grateful to the Department of Electrical and Computer

Engineering for allowing to me the opportunity and providing the necessary support

to pursue a doctorate in computer engineering. I am thankful to my dissertation

committee, comprising of Professors David Starobinski, Ari Trachtenberg, Gianluca

Stringhini, and Alan Liu, for their valuable feedback in improving this thesis.

In his words, Prof. Starobinski hired me to do research on automotive sys-

tems given my background in software development of automotive network stacks

at Mentor Graphics. However, that is not what this dissertation turned out to be

about. . . Instead, Prof. Starobinski allowed me the freedom to pick a project of my

own choice from the ones that were going on at the time at NISLab. Fast-forward a

few years and here we are with some of our remarkable work in the őeld of blockchains!

I will always appreciate the role that Prof. Starobinski played as my advisor and I am

thankful to him for guiding me throughout my Ph.D. career. I have found nothing

but support and constructive feedback from him. There has not been a single moment

where I was afraid of speaking with him about things that were not working because

I was always conődent that he would hear me out, and give some sound advice. I

would also like to acknowledge Prof. Trachtenberg for always providing to-the-point

feedback and comments that have helped improve my paper writing and presentation

skills over the years.

I am indebted to every professor and teacher who has ever taught me anything.

They have not only played an important part in developing my technical skills but

have also helped mold my personality. The list is very long and I cannot possibly

v

mention everyone though I would speciőcally like to acknowledge Profs. Starobinski,

Egele, Coskun, Moreshet, Varia, Trachtenberg, and Liu from my time at Boston

University; Aftab Alam, Irfan Iqbal, Omer Saleem Bhatti, Azeem Hafeez, Shazia

Haque, Zahra Arshad, and Nabeel A. Qadeer from National University of Computer

& Emerging Sciences; and Mussarat Mashadi, and Zakia Sarwar.

I have had the privilege of having some great lab mates during my time at NISLab:

Johannes, Nabeel, Steven, Trishita, Liangxiao, Stefan, Jonathan, Novak, Zhenpeng,

Bowen, Daniel, John, and Sean. We have had many fun debates in the lab and on

Slack. I have learnt many new things from all of them be it in our random discus-

sions or research/course collaborations. I have had some really amazing friends in

my life, some of whom have gone above and beyond to look out for me: Shehwar,

Salman, Natasa, Waleed A., Usman, Kasim, Zaki, Gulrayz, Waleed T., Ahmad, Gol-

sana, Umair, Jawad, Ali, Imran, Salahuddin, Asjad, Burhan, and Akbar. I hope our

friendship will outlast our fame!

I dedicate this dissertation to my late father whom I miss dearly and wish were

with me to celebrate this achievement, to my mother who ensured quality education

for her children despite facing several hardships, to my brother who never complained

when he had to take on many of my responsibilities when I left home for U.S. to

start my Ph.D., to my sisters who always supported and encouraged me to pursue

my dreams, and to my beautiful wife for making my life so much better with her

presence, and unconditional love and affection. I am also grateful to my extended

family, especially my maternal grandfather, and to my in-laws for their care and

never-ending support.

Finally, I thank everybody who played a part in the successful realization of this

thesis, whose name I could not mention above.

vi

MEASURING AND IMPROVING THE PERFORMANCE

OF THE BITCOIN NETWORK

MUHAMMAD ANAS IMTIAZ

Boston University, College of Engineering, 2022

Major Professor: David Starobinski, Ph.D.

Professor of Electrical and Computer Engineering

Professor of Systems Engineering

ABSTRACT

The blockchain technology promises innovation by moving away from conventional

centralized architectures, where trust is placed in a small number of actors, to a

decentralized environment where a collection of actors must work together to maintain

consensus in the overall system. Blockchain offers security and pseudo-anonymity to

its adopters, through the use of various cryptographic methods. While much attention

has focused on creating new applications that make use of this technology, equal

importance must be given to studying naturally occurring phenomena in existing

blockchain ecosystems and mitigating their effects where harmful.

In this dissertation, we develop a novel open-source log-to-file system that pro-

vides the ability to record information relevant to events as they take place in live

blockchain networks. Speciőcally, our open-source software facilitates in-situ mea-

surements on full nodes in the live Bitcoin and Bitcoin Cash blockchain networks.

This measurement framework sheds new light on many phenomena that were previ-

ously unknown or scarcely studied.

First, we examine the presence and impact of churn, namely nodes joining and

leaving, on the behavior of the Bitcoin network. Our data analysis over a two-month

vii

period shows that a large number of Bitcoin nodes churn at least once. We perform

statistical distribution őtting to this churn and emulate it in our measurement nodes

to evaluate the impact of churn on the performance of the Bitcoin protocol. From our

experiments, we őnd that blocks received by churning nodes experience as much as

őve times larger propagation delay than those received by non-churning nodes. We

introduce and evaluate a novel synchronization scheme to mitigate such effects on

the performance of the protocol. Our empirical evaluation shows that blocks received

by churning nodes that synchronize their mempools with peers have roughly half the

delay in propagation experienced by those that do not synchronize their mempools.

We next evaluate and compare the performance of three block relay protocols,

namely the default protocol, and the more recent compact block and Graphene pro-

tocols. This evaluation is conducted over full nodes running the Bitcoin Unlimited

client (which is used in conjunction with the Bitcoin Cash network). We őnd that

in most scenarios, the Graphene block relay protocol outperforms the other two in

terms of the block propagation delay and the amount of total communication asso-

ciated with block relay. An exception is when nodes churn frequently and spend a

signiőcant fraction of time off the network, in which case the compact block relay

protocol performs best. In-depth analyses reveal subtle inefficiencies of the protocols.

Thus, in the case of frequent churns, the Graphene block relay protocol performs as

many as two extra round-trips of communication to recover information necessary

to reconstruct blocks. Likewise, an inspection of the compact block relay protocol

indicates that the full transactions included in the initial block message are either

unnecessary or insufficient for the successful reconstruction of blocks.

Finally, we investigate the occurrence of orphan transactions which are those

whose parental income sources are missing at the time that they are processed.

These transactions typically languish in a local buffer until they are evicted or all

viii

their parents are discovered, at which point they may be propagated further. Our

data reveals that slightly less than half of orphan transactions end up being included

in the blockchain. Surprisingly, orphan transactions tend to have fewer parents on

average than non-orphan transactions, and their missing parents have a lower fee,

a larger size, and a lower transaction fee per byte than all other received transac-

tions. Moreover, the network overhead incurred by these orphan transactions can be

signiőcant when using the default orphan memory pool size (i.e., 100 transactions),

although this overhead can be made negligible if the pool size is simply increased to

1,000 transactions.

In summary, this dissertation demonstrates the importance of characterizing the

inner behavior of the peer-to-peer network underlying a blockchain. While our results

primarily focus on the Bitcoin network and its variants, this work provides foundations

that should prove useful for studying and characterizing other blockchains.

ix

Contents

Contents x

List of Tables xv

List of Figures xvii

1 Introduction 1

Research questions . 5

Contributions . 6

Takeaways . 13

Road map . 16

2 Background and related work 17

2.1 Preliminaries . 17

2.1.1 Transaction . 17

2.1.2 Block . 18

2.1.3 Miner . 20

2.1.4 Blockchain . 20

2.2 Bitcoin and Bitcoin Unlimited . 21

2.2.1 Bitcoin . 22

2.2.2 Bitcoin Unlimited . 23

2.2.3 Data structures . 24

Bloom őlter . 24

Invertible Bloom lookup table 26

x

2.2.4 Block relay protocols . 27

Default (normal) block relay 27

Compact block relay . 28

Graphene block relay . 30

2.3 Orphan transactions . 34

2.4 Related work . 36

2.4.1 Measurement tools . 36

2.4.2 Block propagation and churn 37

2.4.3 Orphan transactions . 41

2.4.4 Summary . 42

3 Churn in the Bitcoin network 44

3.1 Churn characterization . 45

3.1.1 Obtaining and processing data 45

3.1.2 Churn rate . 47

3.1.3 Statistical őtting of session lengths 48

Up sessions . 49

Down sessions . 51

3.1.4 Subnet analysis . 52

3.1.5 Geographic analyses . 54

3.2 Experimental analysis of compact block performance with churn . . . 57

3.2.1 Data collection mechanism . 57

3.2.2 Experimental setup . 58

3.2.3 Statistics on compact blocks 59

3.2.4 Statistics on missing transactions 60

3.2.5 Statistics on propagation delay 61

3.3 MempoolSync . 62

xi

3.3.1 Design of MempoolSync . 63

3.3.2 Experimental evaluation of MempoolSync in the presence of churn 68

3.3.3 Statistics on compact blocks 71

3.3.4 Statistics on missing transactions 71

3.3.5 Statistics on propagation delay 72

3.4 Discussions and limitations . 73

Characterization of churn . 73

Sampled session lengths . 75

MempoolSync . 75

3.5 Summary . 76

4 Empirical comparison of block relay protocols for blockchains 78

4.1 Evaluation of block relay protocols 79

4.1.1 Data collection mechanism . 79

4.1.2 Experimental setup . 80

4.1.3 Statistics on the propagation delay of blocks 82

4.1.4 Statistics on the communication size per block 85

4.1.5 Correlation between propagation delay and communication per

block . 88

4.2 Insights into block relay protocols . 90

4.2.1 Graphene in depth . 90

4.2.2 Temporal analysis of the Graphene block relay protocol 93

4.2.3 Size of őrst message across block relay protocols 96

4.2.4 On the usefulness of additional transactions in the compact

block relay protocol . 98

4.3 Summary . 102

xii

5 Orphan Transactions in the Bitcoin Network 104

5.1 Characterization of orphan transactions 105

5.1.1 Measurement setup . 106

5.1.2 Number of parents . 106

5.1.3 Transaction fee of missing parents 108

5.1.4 Transaction size of missing parents 109

5.1.5 Relating transaction fee to size of missing parents 110

5.1.6 Orphan transactions in blocks 112

5.1.7 Delay in receiving missing parents from peers 113

5.1.8 Impact of transaction fee . 115

5.2 Comparison of orphan transaction behavior with different orphan pool

parameters . 117

5.2.1 Measurement setup . 117

5.2.2 Removal of orphan transactions from orphan pool 120

5.2.3 Addition of orphan transactions to orphan pool 122

5.2.4 Network overhead . 123

5.2.5 Performance overhead . 124

CPU overhead . 124

Memory overhead . 125

5.2.6 Varying orphan transaction timeouts 127

5.3 Orphan transactions in nodes joining the network 128

5.3.1 Measurement setup . 129

5.3.2 Fraction of orphan transactions 129

5.3.3 Arrival times of orphan transactions 130

5.3.4 Removal of orphan transactions from orphan pool 131

5.4 Discussions and limitations . 132

xiii

Peer selection in measurement nodes 134

Performance impact of orphan transactions 134

Ideas for future development . 134

5.5 Summary . 135

6 Conclusions and future work 137

Summary of contributions and őndings 138

Future work directions . 142

Concluding remarks . 144

A Explanation of log-to-file system 145

A.1 Motivation and challenges . 145

A.2 Design of the system . 148

A.3 Usage of the system . 148

Bibliography 155

Curriculum Vitae 179

xiv

List of Tables

3.1 R2 and RMSE scores of distribution őts for łup sessionž lengths. . . . 50

3.2 R2 and RMSE scores of distribution őts for łdown sessionž lengths. . 52

3.3 Percentage of continuously connected nodes in each continent. 56

3.4 Block reception statistics for control nodes C1, C2, C3, and C4, and

churning nodes X1, X2, X3 and X4. 60

3.5 An illustration of (a) unsorted transactions in the mempool with their

ancestor scores (in satoshis), (b) sorted transactions in the mempool

with their ancestor scores (in satoshis), (c) hashes of transactions al-

ready sent to a peer, and (d) transaction hashes sent in MempoolSync

message when N = 5. 69

3.6 Block reception statistics for churning nodes M1, M2, M3, and M4 that

accept MempoolSync messages, and churning nodes X1, X2, X3, and

X4 that do not accept such messages. 71

4.1 Fraction of blocks that have propagation delay larger than 100 ms, and

1,000 ms in Graphene, compact and default block relay protocols over

varying ŕuctuating periods with (a) 25%, and (b) 75% off duty cycles. 84

4.2 Fraction of blocks that have communication sizes larger than 10 kB,

100 kB, and 1,000 kB in Graphene, compact and default block relay

protocols over varying ŕuctuating periods with (a) 25%, and (b) 75%

off duty cycles. 87

xv

4.3 Coefficients for Spearman Rank Correlation between the block prop-

agation delays and block communication sizes in Graphene, compact,

and default block relay protocols in nodes in the statistical churn

regime. 89

4.4 Coefficients for Spearman Rank Correlation between the block propa-

gation delays and block communication sizes in Graphene, compact,

and default block relay protocols in nodes in the periodic churn

regime. In general, the propagation delays and communication size

are moderately to highly correlated. 89

5.1 Average CPU usage of nodes with different orphan pool sizes. 126

xvi

List of Figures

2·1 A Bitcoin transaction with multiple input accounts and multiple output

accounts. The difference between the total input value and the total

output value is the transaction fee. 18

2·2 An illustration of a block. 19

2·3 An illustration of a merkle tree created by transactions txA, txB, txC,

and txD. The node with the value HABCD is called the merkle root of the

tree. 19

2·4 An illustration of a blockchain. Each block is cryptographically linked

to the previous creating an unalterable chain of blocks. 21

2·5 Illustration of Bloom őlter operations. 25

3·1 Size of Bitcoin network over the measurement period. 47

3·2 Daily churn rate on the Bitcoin network. 48

3·3 Distribution őts for łup sessionž lengths. 50

3·4 Distribution őts for łdown sessionž lengths. 51

3·5 Largest IPv4 /24 subnets sorted in descending order. 53

3·6 Number of reachable nodes in the largest IPv4 /24 subnet in consecu-

tive Bitcoin network snapshots. 53

3·7 CDF of duty cycle of nodes in the largest IPv4 /24 subnet. The duty

cycle of a node represents the fraction of a time it is reachable during

the measurement period. 55

3·8 CDF of duty cycle of nodes in the 2nd to 10th largest IPv4 /24 subnets. 55

xvii

3·9 Correlation matrix showing the correlation between churn behavior

of nodes in the 10 largest /24 IPv4 subnets. The red line delimiters

separate between different subnets. 56

3·10 Geographic location of individual nodes on the Bitcoin network. Nodes

that are always up are marked white. Remaining (black) nodes con-

tribute to churn in the network. 57

3·11 Sampled up and down session lengths. 58

3·12 CCDF of number of missing transactions in churning and control nodes. 61

3·13 Propagation delay across all blocks for both churning and control nodes. 62

3·14 Exchange of messages between the non-churning node (sender) and

the churning node (receiver) in the MempoolSync protocol. 64

3·15 Procedure for selecting transaction hashes to be included in the inv

message in each round. 65

3·16 Sampled up and down session lengths. 70

3·17 CCDF of number of missing transactions across all blocks for all nodes. 72

3·18 CCDF of propagation delay across all blocks for all nodes. 73

4·1 Complementary cumulative distribution functions (CCDFs) of block

propagation delays in Graphene, compact, and default block relay pro-

tocols in the always on and statistical churn regimes. Graphene

block relay protocol performs best in roughly 99% of blocks whereas

default block relay protocol always performs worst. 83

4·2 CCDFs of block communication sizes in Graphene, compact, and de-

fault block relay protocols in the always on and statistical churn

regimes. Graphene block relay protocol performs best in both regimes

whereas default block relay protocol performs worst. 86

xviii

4·3 Proportion of block decode failures, i.e., scenarios ③, ④, and ⑤ in

Listing 3 , over different ŕuctuation periods with 25% and 75% off

duty cycles. Block decode failure rates are higher when nodes churn

more often and stay off the network longer thereby not being able to

recover. This is prominent in ŕuctuating periods of 20 m and 1 hr. . . 91

4·4 Average number of missing transactions (with 95% conődence inter-

vals) from blocks that are decoded successfully, i.e., scenario ② in

Listing 3 over different ŕuctuation periods with 25% and 75% off

duty cycles. 92

4·5 Average number of missing transactions from blocks that are decoded

successfully, i.e., scenario ④ in Listing 3 over different ŕuctuation

periods with 25% and 75% off duty cycles. 93

4·6 Percentage of blocks received in the statistical churn regime that

face the őve scenarios after the churning nodes rejoin the network. The

longer a node stays on the network, the more scenario ① (i.e., no extra

round-trip) prevails whereas the scenarios ③, ④, and ⑤ do not occur

very often. 94

4·7 Percentage of blocks received in the periodic churn regime with a

ŕuctuation period of 1 hr and off duty cycle of (a) 25% and (b) 75%

that face the őve scenarios after a node rejoins the network. In either

case, scenario ① does not represent the majority of cases for the őrst

block and scenarios ③ and ⑤ occur infrequently. 95

4·8 Sizes of the őrst block messages, i.e., block, cmpctblock, and grblk,

against the number of transactions in the respective compact blocks.

The block messages almost always have the largest sizes. 98

xix

4·9 Sizes of the cmpctblock messages (left y-axis) and the number of ad-

ditional transactions in blocks (right y-axis) against the number of

transactions in the respective compact blocks. There exists a direct

correlation between the number of additional transactions in and the

sizes of the cmpctblock messages . 99

4·10 Number of useful additional transactions in cmpctblock messages against

the total number of additional transactions in respective cmpctblock

messages in (lower half) always on and (upper half) statistically churn-

ing nodes. The diagonal (x = y) represents the case when 100% of the

additional transactions in cmpctblock messages are useful. 101

5·1 Empirical complementary cumulative distribution function (CCDF) of
(

i
)

the number of parents of orphan transactions and
(

ii
)

number

of parents of non-orphan transactions. In general, orphan transactions

have fewer parents. 107

5·2 Cumulative distribution functions (CDFs) of transaction fee of miss-

ing parents of orphan transactions, and transaction fee of all other

transactions. 108

5·3 CCDFs of transaction size of missing parents of orphan transactions,

and transaction size of all other transactions. 110

5·4 CDFs of transaction fee per byte of missing parents of orphan transac-

tions, and transaction fee per byte of all other transactions. 111

5·5 CDF of time elapsing from the point a transaction is removed from

the orphan pool because its missing parents are found till the block

containing the said orphan transaction is received. 112

5·6 CCDF of time elapsing from the point a transaction becomes orphan

till one of its parents is found. 114

xx

5·7 CCDFs of time spent in relay queue of parent transactions that are

relayed with and parent transactions that are relayed before their re-

spective child transactions. 115

5·8 CCDFs of transaction fee of parent transactions that are relayed with

and parent transactions that are relayed before their respective child

transactions. 116

5·9 Similarity matrix depicting average number of common peers across

nodes during the őrst round of measurement period. 119

5·10 Similarity matrix depicting average number of common peers across

nodes during the second round of measurement period. 120

5·11 Fraction of orphan transactions that are removed from the orphan pool

due to each of the six causes across all nodes, under different pool sizes.121

5·12 Number of unique and total number of orphan transactions received

across nodes with varying orphan pool sizes. 122

5·13 Network overhead incurred by nodes with varying orphan pool sizes

across nodes. 125

5·14 Fraction of orphan transactions that are removed from the orphan pool

due to each of the six causes across all nodes, under different timeouts. 128

5·15 Percentage of transactions that become orphan during each 5-minute

bin interval of the 12 hour long sessions. 130

5·16 Maximum, average, and minimum number of transactions received by

nodes during each 5-minute bin interval of the 12 hour long sessions

aggregated over all 84 sessions. The differences between the curves

indicate that the number of incoming transactions varies across sessions.131

xxi

5·17 CDF of arrival times of orphan transactions during measurement pe-

riods. Roughly 50% of all orphan transactions are received in the őrst

two hours. 132

5·18 Fraction of transactions that are removed from the orphan pool due to

each of the six causes (see Section 2.3) over the őrst two hours of

the 12 hour long sessions. 133

A·1 State transitions for the default block relay protocol from the perspec-

tive of a receiver. 146

A·2 State transitions for the compact block relay protocol from the per-

spective of a receiver. 146

A·3 State transitions for the Graphene block relay protocol from the per-

spective of a receiver. States with backgrounds in green , purple ,

yellow , cyan , and red occur in scenarios ①, ②, ③, ④, and ⑤,

respectively (see Listing 3). A state with multiple background col-

ors represents more than one corresponding scenarios that transition

through it. 147

xxii

List of Abbreviations

API Application programming interface
BCH Bitcoin Cash
BTC Bitcoin
BU Bitcoin Unlimited
CCDF Cumulative distribution function
CDF Complementary cumulative distribution function
CPI Characteristic polynomial interpolation
CPU Central processing unit
EST Eastern Standard Time
GB Gigabyte (i.e., 109 bytes)
GHz Gigahertz
HDD Hard disk drive
IBLT Invertible Bloom lookup table
ID Identiőer
IoT Internet of Things
IP Internet protocol
IPv4 Internet protocol version 4
IPv6 Internet protocol version 6
JSON JavaScript Object Notation
KB Kilobytes (i.e., 103 bytes)
LTS Long-term support
MB Megabyte (i.e., 106 bytes)
MLE Maximum likelihood estimation
NAT Network address translation
P2P Peer-to-peer
PCN Payment channel network
RAM Random access memory
RBF Replace-by-Fee
RMSE Root mean squared error
RPC Remote procedure call
SRC Spearman Rank Correlation
TB Terabyte (i.e., 1012 bytes)
TX Transaction
USD United States dollar

xxiii

1

Chapter 1

Introduction

Blockchain has emerged as a disruptive technology with applications in digital curren-

cies (also known as cryptocurrencies) [1ś6], supply chain [7ś10], health care [11ś14],

the Internet of Things (IoT) [15ś20], and more [21ś28]. Blockchains are immutable

in the sense that it is practically impossible (as long as the underlying cryptography

is secure) for an adversary to tamper with the data recorded in a blockchain without

controlling a signiőcant amount of resources [1,29]. They are also decentralized and re-

duce the amount of trust placed in a single actor such as central banks in conventional

payment methods. Instead, blockchains require an entire network of users to establish

and maintain consensus, often with economic incentives [30]. These properties make

the blockchain technology suitable for the aforementioned applications, attracting at-

tention from a wide user base [31]. It is estimated that more than 220 million people

have used cryptocurrencies alone by June 2021 [32] and this number is expected to

increase as new blockchain applications are created.

Bitcoin was the őrst application of blockchain, and was originally introduced by

Satoshi Nakamoto in 2008 [1] as a peer-to-peer electronic payment system. It is still

one of the largest and most popular blockchain systems to date and is currently used

for buying and selling a wide variety of goods in different markets across the globe

including Virgin Galactic [33], AT&T [34], Newegg [35], and more. At the time of

writing, this cryptocurrency has a total market capitalization of well over one trillion

USD [36]. Numerous spin-off cryptocurrencies, called altcoins, have been launched

2

since the inception of Bitcoin, with a total market cap of more than 1.5 trillion

USD [37]. With such huge amounts of money at stake, blockchains present compelling

areas for research.

Despite possessing impressive properties that make them appealing for several use

cases, blockchains may still be vulnerable to attacks. Quick dissemination of transac-

tions (i.e., transfers of tokens such as cryptocurrency, digital assets, etc.,) and blocks

(i.e., collections of transactions; explained in more detail in Chapter 2) is vital to

maintaining consensus and security in a trust-less blockchain network. Slow propaga-

tion of transactions may result in nodes in the network to miss transactions causing

added extra round-trip communication and, consequently, increasing the delay in

propagation of blocks containing these transactions. Similarly, out-of-order propaga-

tion of transactions may render them orphan [38,39], i.e., a transaction whose parent

transaction(s) are not known and, thus, the validity of the tokens it spends cannot be

veriőed. This not only hinders relay of such transactions in the network, but orphan

transactions have also been used to infer topology of [40] and mount attacks [41, 42]

on the Bitcoin network.

Additionally, slow propagation of blocks can cause an increase of forks of the

blockchain, wherein several blocks are mined independently and distributed before

the network nodes accept one of the blocks as the head of the blockchain while

the other blocks become stale1. This issue leads to periods of ambiguity, during

which different nodes in the network may have different views of the blockchain.

An adversary may leverage such ambiguities for certain attacks, such as the double

spending, selősh mining, and eclipsing attacks [44ś49]. Stale blocks also lead to a

waste of computational resources for nodes that have created them, and the nodes

that have created new blocks on top of them.

1The terms stale and orphan blocks are often interchangeably used in the blockchain community
to refer to blocks that are no longer part of the main chain [43]. We use the term stale here so as not
to confuse the reader between “orphan transactions” and “orphan blocks” which are quite different.

3

The rate at which transactions are added to blocks determines the number of

transactions that a blockchain system can support, and it may thus seem intuitive

that increasing block size can lead to higher transaction throughput [50ś53]. Unfortu-

nately, large blocks also increase delay in the propagation of blocks as well as require

more bandwidth for propagation and may consume more network resources.

To address the challenge of information dissemination, several ideas have been

proposed to speed up block propagation in various blockchain networks including

block relay protocols such as the compact and Graphene block relay protocols that

compress sizes of blocks [54ś57], protocols such as FIBRE that enable high-speed

transfer of blocks within a network [58ś60], and more [61ś67]. However, not all ideas

have been implemented or evaluated in a real blockchain system. For instance, some

ideas, such as Kadcast [67] and P4P [64], have only been simulated or have only

been evaluated over simulated data sets. These proposals, nevertheless, inherently

assume that nodes in the blockchain system are always connected to the network.

That is, they do not account for churn, the effect created by independent arrival and

departure of nodes in a peer-to-peer network.

In general, block relay protocols need to be resilient to churn of full nodes, which

is ubiquitous and pervasive in blockchain networks [68ś70]. Full nodes perform the

process of verifying the integrity and correctness of blocks [71, 72]. They each store

the entire blockchain [73], while also forming a peer-to-peer network for updates. Full

nodes verify that a new mined block meets speciőcations and is valid (e.g., it does

not contain double-spent transactions). Once a full node validates a block, it relays

its contents to peers [74] based on speciőcations of an underlying block relay protocol

such as the normal, compact, or Graphene block relay protocols explained in greater

detail in Section 2.2.4 . As such, full nodes and block relay protocols play a crucial

role in the performance and security of the blockchain system [75ś78].

4

Churn of full nodes may occur due to a variety of reasons, such as the need to apply

software patches or intermittency of power or network connectivity. Indeed, power

outages are common in developing countries [79ś86] and not unusual in developed

countries as well [87ś98]. Churn in different peer-to-peer networks has been widely

studied, characterized and modeled [99ś105]. However, before the work presented in

this thesis, churn had received little attention in relation to blockchains [49,106ś112].

Works that do consider churn in their models have not sought a full characterization

and evaluation of its impact.

It becomes important, in this context, to empirically measure the occurrence of

natural phenomena, such as churn and orphan transactions, in blockchain systems

since they can impact the performance of the system. Moreover, metrics including

the effects of the aforementioned phenomena on the propagation delay and the com-

munication cost of relaying blocks and transactions must be quantiőed. While some

works study such metrics on end-to-end blockchain networks, [40, 45, 110, 113ś118],

i.e., from the vantage point of the entire network as whole, to the best of our knowl-

edge, very little work has been done to study performance metrics in-situ within nodes

participating in the blockchain ecosystem [119, 120]. Though the former provide in-

teresting insights into the overall system, it is necessary to understand the effects

of natural phenomena ś such as churn and orphan transactions ś that may occur in

blockchain systems on full nodes from their vantage point since they are crucial for

the security of the system. Full nodes exchange a large number of messages amongst

one another to relay information such as announcements of new blocks, relay of trans-

actions, and so on. It should thus be useful to extract meaningful data out of these

exchanges to help quantify the metrics mentioned above. However, implementations

of blockchain protocols are often complex, and signiőcant effort may be required to

devise a scheme that enables extraction of useful data.

5

In the rest of this section, we őrst identify the main research questions which this

thesis seeks to answer. Next, we explain, in detail, the most signiőcant contributions

of the thesis. Finally, we summarize key takeaways from this work.

Research questions

In this thesis, we identify the following research questions based on the discussion

above.

• How can one precisely quantify performance metrics such as block propagation

delays and the impact of orphan transactions from the vantage point of full nodes

in the blockchain system?

• Does there exist churn in blockchain networks? If yes, to what degree? How

does it affect the performance of the corresponding blockchain system?

• Can we mitigate the effect of churn on the performance of a blockchain system?

• How do different block relay protocols compare to one another? How does their

performance match in realistic network conditions?

• What are the circumstances under which transactions may become orphan in a

blockchain system? What are the characteristics of these orphan transactions?

• How do orphan transactions impact the performance of the underlying blockchain

system? Can we mitigate this impact on performance of the system?

• Does there exist a relationship between churn of full nodes in a blockchain system

and transactions received by the nodes becoming orphan?

We seek the answers to these research questions through empirical methods.

Therefore, we conduct measurement campaigns on popular blockchain systems namely

6

Bitcoin and an implementation of one of its variant ś Bitcoin Unlimited. Our contri-

butions and main őndings in this thesis are as explained next.

Contributions

The contributions and őndings in this thesis are explained in detail as follows.

Churn in the Bitcoin network. Our goal in Chapter 3 is to systematically

characterize churn in the Bitcoin network and answer the following research ques-

tions: does there exist churn in the Bitcoin system? If yes, to what extent? What

is its impact on the system? How can this impact be evaluated? We describe the

methodology we employed to answer these questions. We believe the same method-

ology can be used in any blockchain system to study the effects of churn on the

system.

Our characterization of churn in the Bitcoin network is based on measurements

of the duration of time that nodes in the network are continuously reachable (i.e.,

up session lengths) and continuously unreachable (i.e., down session lengths). For

this purpose, we collect data on behavior of nodes in the network. Our data shows

that out of more than 40,000 unique nodes on the network, over 97% leave and

rejoin the network multiple times over a time span of about two months. In fact,

the average churn rate in the Bitcoin network exceeds 4 churns per node per day.

Our statistical analysis in the chapter identiőes the log-logistic distribution and the

Weibull distribution as the best őts for up session lengths and down session lengths,

respectively, among several popular distributions. Next, we analyze churn at the

level of IPv4 subnetworks (subnets). Over the measurement period, we őnd that IP

addresses associated with full nodes in the Bitcoin network belong to about 29,000

unique IPv4 /24 subnets. Our analysis further shows that for over 99% of these

subnets, fewer than 10 unique IP addresses from each subnet appear on the Bitcoin

7

network over the span of two months. Lastly, we analyze churning behavior of the 10

subnets with the largest numbers of nodes. While churning behavior of nodes within

subnets may be correlated, churning behavior of nodes belonging to different subnets

appears largely uncorrelated.

The compact block relay protocol [54] (described in greater detail in Section 2.2.4)

is implemented in Bitcoin to compress the sizes of blocks and speed up their propaga-

tion. In this context, our next contribution is to empirically evaluate the performance

of the protocol under realistic node churning behavior, leveraging our statistical char-

acterization of churn to generate up and down session lengths from the distributions

mentioned above. But how can we evaluate this performance?

To this end, we have created a novel log-to-file system, which works as follows:

we analyze the Bitcoin software and identify events of interest such as arrival of a

block, the transactions it contains, and so on. Next, data relevant to each of these

events is dumped to őles along with nanosecond-precision timestamps that allow us

to precisely őgure out when these events take place. We have made the log-to-őle

system and all logs generated from experiments public for use by the wider research

community [121,122].

We use the aforementioned generated session lengths to emulate churn on nodes

under our control in the live Bitcoin network (i.e., on the Bitcoin mainnet), taking

these nodes off the network and bringing them back on according to the sampled ses-

sion lengths over a two-week period. Our analysis, compared against a control group

of nodes that are continuously connected to the network, shows that the performance

of the compact block protocol signiőcantly degrades in the presence of churn. Speciő-

cally, the churning nodes see a signiőcantly larger fraction of incomplete blocks as the

control nodes (an average of 33.12% vs. 7.15% unsuccessful compact blocks). This is

due to an absence of about 78 transactions on average for the churning nodes, versus

8

less than 1 transaction for the control nodes. The end result is that, on average,

churning nodes require over őve times as much time to propagate a block than their

continuously connected counterparts (i.e., 566.89 ms vs. 109.31 ms). The largest

propagation delay experienced by blocks received by churning nodes is more than

twice the largest propagation delay experienced by any block received by the control

nodes (i.e., 105.54 s vs. 46.14 s). These results conőrm that churn can have a signif-

icant impact on block propagation in Bitcoin. Note that throughout this document,

we refer to the single-hop block propagation delay, i.e., the time it takes to completely

recover and reconstruct a block once a node receives an announcement of the block

from a peer, as block propagation delay or propagation delay.

To alleviate the aforementioned issues with churning nodes, we propose and im-

plement into the Bitcoin Core a synchronization protocol, dubbed MempoolSync, in

which a node periodically transmits top-ranked transactions of its mempool to its

peers. The goal of the protocol is to provide churning nodes with those transactions

that they may have missed during their down times and which are likely to be included

in future blocks. Our experimental results indicate that churning nodes that accept

MempoolSync messages are able to successfully reconstruct, on average, a larger frac-

tion of compact blocks than churning nodes that do not accept such messages (i.e.,

83.19% vs. 66.88%). As a result, churning nodes that accept MempoolSync messages

have signiőcantly smaller block propagation delays on average (i.e., 249.06 ms vs.

566.89 ms). These results show that a scheme that synchronizes mempools of churn-

ing nodes with mempools of other highly connected nodes in the Bitcoin network may

be able to overcome performance degradation issues.

Comparison of block relay protocols. As noted earlier, there exist multiple

block relay protocols in different blockchain systems. Intuitively, one may ask: how

do these protocols compare one to another in real-world network conditions?

9

We answer this question in Chapter 4 . We analyze and quantify real-world

effects on three popular block propagation protocols used in the Bitcoin ecosystem

(described in greater detail in Section 2.2.4):
(

i
)

the legacy (default) block prop-

agation protocol [1],
(

ii
)

the compact block relay protocol [54], and
(

iii
)

the more

recent Graphene block relay protocol [55, 123]. Our comparisons are carried out

through the popular Bitcoin Unlimited (BU) client, which is a concrete implemen-

tation for Bitcoin Cash (a fork of the Bitcoin blockchain - see Section 2.2.2) that

can support all three protocols, after some code changes. Unlike existing simulation-

based evaluations, our experiments include important real-world artifacts such as the

ŕuctuations in node connectivity that are ubiquitous for these networks.

Our experimental testbed, which consists of 12 full nodes, operates in three net-

work regimes. The őrst regime represents an ideal situation where the full relay nodes

in our testbed are always on, i.e., continuously connected to the BU network. In

the second regime, nodes in the testbed exhibit statistical churn, mimicking the

statistical behavior of real-life churning nodes on the Bitcoin network [68ś70]. In

the third regime, nodes experience periodic churn, wherein nodes cycle through

łonž and łoffž periods at a őxed frequency. This regime allows us to compare and

contrast the impact of different churn parameters on the performance of block relay

protocols, and emulate the aforementioned electricity outages. We stress that all our

experiments consider full nodes that relay blocks, but do not mine them.

We extend our log-to-őle system to provide őne-grained measurement capabilities

to assess the performance of the three aforementioned block relay protocols. We are

now able to not only record events, such as arrival of blocks, but also very precise

information that enables us to provide in-depth analyses of the block relay protocols.

We have made this version of our log-to-őle system as well as relevant experimental

logs publicly available for use by the wider research community [124,125].

10

Our experiments show that for nodes following the always on and statistical

churn regimes, the Graphene block relay protocol performs by far the best. Indeed,

the mean propagation delays for the compact and the legacy blocks are 1.4 times and

5 times larger, respectively. Similarly, the mean communication sizes are respectively

1.8 − 1.9 times and 15 − 25 times larger. In nodes following the periodic churn

regime, the Graphene block relay protocol still generally performs best, but there are

cases where the compact block relay protocol is superior. In particular, this happens

when nodes churn frequently and miss receiving transactions that are included in the

blocks received by the nodes soon after they rejoin the network. We found there

to be a moderate to high correlation between the amount of communication needed

to successfully reconstruct blocks and the propagation delay of blocks, regardless of

the location of the peers of our testbed nodes. This indicates that as the amount of

communicated required to successfully reconstruct blocks increases, so does the delay

in propagation of the respective block.

Next, we perform an in-depth analysis of the Graphene block relay protocol. In

particular, we examine the cases in the periodic churn regime where the perfor-

mance of the protocol degrades. The analysis shows that when nodes churn frequently,

they more often require as many as two additional round-trip communications to re-

cover information needed to successfully reconstruct blocks which also adds to the

delay in the propagation of the block. A temporal analysis of the protocol in both

the statistical churn and periodic churn regimes shows that a higher fraction of

blocks received immediately after nodes rejoin the network contain transactions that

are missing from their mempools. However, this fraction quickly falls as the nodes

stay connected to the network for long.

Finally, we further compare the efficiency of the three protocols by examining

the sizes of the őrst messages received by the nodes from their peers. Our analysis

11

shows that the sizes of the őrst messages received in the legacy block relay protocol

are almost always larger than őrst messages received in the remaining two protocols.

Indeed, őrst messages received in the Graphene and compact block relay protocols are

respectively, on average, roughly 50 times and 10 times smaller. We őnd that the sizes

of the őrst messages received in the compact block relay protocol correlated with the

number of full (additional) transactions included in the message. Further, excluding

the coinbase transaction, full transactions contained in the őrst message sent by the

compact block protocol are often insufficient or redundant for block decoding. There

is not a single case where the őrst message contains at least two full transactions and

all such transactions are helpful.

Orphan transactions in the Bitcoin network. In Chapter 5 , we extend our

measurement methodology to better understand the properties and behavior of or-

phan transactions in the Bitcoin system which remains a largely unexplored őeld

to date. Hence, many of the performance questions regarding orphan transactions

remain: To what extent orphan transactions are prevalent in the Bitcoin network?

What are the factors that make a transaction orphan? What is the impact of an

orphan transaction on the performance of the Bitcoin ecosystem? Does an orphan

transaction incur latency or communication overhead? If so, can one reduce this over-

head? Does node churn affect orphan transactions? To the best of our knowledge,

there exists no work that comprehensively answers these questions.

Our őrst goal in this context is to characterize orphan transactions in the Bitcoin

network and identify the environment that produces them, based on a data set of

4.20 × 106 unique transactions (8.71 × 104 of which are orphans) received over the

measurement period. We discover that the intuition that orphan transactions may

have larger numbers of parents than non-orphans (presumably resulting in a greater

probability that one of the parents is missing) is misleading. Indeed, orphan trans-

12

actions generally have fewer parents than all other transactions received during our

measurements, averaging 1.18 parents (orphans) versus 2.20 (non-orphans). We con-

clude that the number of parents does not suitably distinguish between orphan and

non-orphan transactions.

We then consider other metrics (i.e., transaction fee, transaction size, and trans-

action fee per byte) to discern the distinction between these two types of transactions.

Our analysis shows that missing parents of orphan transactions have smaller fees and

larger size than all other received transactions. More precisely, a missing parent of

an orphan transaction has an average transaction fee of 5.56 × 103 satoshis, and an

average transaction size of 5.29 × 102 bytes. By comparison, all other transactions

have an average transaction fee of 9.91×103 satoshis and transaction size of 4.80×102

bytes. Next, we őnd that, on an individual level, missing parents of orphan transac-

tions pay a fee of 6.25 satoshis per byte versus 21.73 satoshis per byte for all received

transactions. As a result, transactions with a smaller fee per byte are more likely to

go missing and render their descendent transactions orphans.

Our analysis shows that 45% of transactions that are orphan at some point end

up being included in the blockchain during the measurement period. Out of them, in

68% of the cases, at least one missing parent appears in the same block as the orphan

transaction.

Next, we study the impact of network and performance overhead caused by or-

phan transactions. We collect data from live nodes in the Bitcoin network with

various orphan pool sizes (including the default of 100). Our measurements show

that orphan transactions incur a signiőcant network overhead (i.e., number of bytes

received by their node) when the orphan pool size is smaller. In effect, the pool őlls

up and transactions in the orphan pool are rapidly evicted to make room for new

orphan transactions. As such, an orphan transaction may be added to the orphan

13

pool multiple times as it is announced by different peers. We show that by slightly

increasing the orphan pool size to 1,000 transactions, we can dramatically reduce this

network overhead without a distinguishable effect on node performance (in terms of

computation and memory). We also examine the effect of changing the timeout after

which orphan transactions are removed from the pool. We do not observe marked

improvement upon either increasing or decreasing the default value of 20 minutes.

Finally, we analyze the behavior of orphan transactions in nodes that are either

new or rejoin the network after a protracted disconnection. We emulate this property

by periodically clearing the mempools of affected nodes. Our measurements show

that immediately after a node joins the network with an empty mempool, over 25%

of the transactions that it receives become orphan. However, as the node stays on

the network for longer, the fraction of transactions that become orphan falls rapidly.

Similarly, over measurement periods of 12 hours, we őnd that roughly 50% of all

transactions that become orphan are received within the őrst two hours after the

node joins the network.

Takeaways

Full nodes play a crucial role in guaranteeing consensus in blockchains (i.e., validating

and relaying transactions and blocks). This thesis őlls a gap in terms of measuring

the performance of blockchains ś in particular Bitcoin and its variant Bitcoin Cash

ś from the vantage point of full nodes. We achieve this by designing an experimen-

tal infrastructure consisting of a measurement software and a testbed. Using this

experimental infrastructure, the thesis unveils and quantiőes signiőcant inefficiencies

in relay mechanisms currently in use in Bitcoin and Bitcoin Cash. The thesis pro-

poses, implements, and evaluates several methods to address these inefficiencies. In

summary, the main contributions in the thesis are as below.

14

• We develop őne-grained measurement capabilities to log and assess the perfor-

mance of Bitcoin and Bitcoin Cash blockchains in-situ.

• We conőrm that there exists churn in the Bitcoin network. We show that as

many as 97% of more than 40,000 nodes in the Bitcoin network churn at least

once in a 60-day time-frame. We next systematically characterize this churn.

• We experimentally evaluate the compact block relay protocol under realistic

churn. We show empirically that the performance of the protocol degrades

whereby blocks miss more transactions and incur larger propagation delays.

• We propose, implement, and evaluate a synchronization protocol as a proof-of-

concept to alleviate observed issues and to highlight the beneőts of synchro-

nizing mempools of churning nodes with highly-connected nodes. We őnd that

doing so reduces the number of transactions missing in blocks consequently

decreasing the propagation delay of blocks.

• We set-up a testbed and empirically compare the performance of three proto-

cols ś namely the default, compact, and Graphene block relay protocols ś im-

plemented in Bitcoin Unlimited under three different network regimes through

extensive experiments. We őnd that the Graphene block relay protocol generally

performs best in the always on and statistical churn regimes whereas the

compact block relay protocol may perform better in some cases in the periodic

churn regime.

• We perform an in-depth analysis of the dynamic and temporal behavior of the

protocols, through which we identify inefficiencies. In particular, we őnd that

nodes may need to perform multiple round-trips of additional communication

to successfully reconstruct Graphene blocks. In the case of the compact block

relay protocol, we discover that the full transactions included in the őrst block

15

messages are either not useful at all or not enough to be completely useful in

reconstructing blocks.

• We study the circumstances that may make Bitcoin transactions orphan. We

observe that counter-intuitively orphan transactions tend to have fewer parents

when compared to non-orphan transactions. The parents of orphan transactions

usually have smaller fees, larger sizes, and smaller fee per byte when compared

to parents of non-orphan transactions.

• We show that the same transaction may be added to the orphan pool several

times due to getting evicted when the pool becomes full. We conduct exper-

iments to show that this behavior causes unnecessary network overhead since

the same transaction may be received multiple times from peers. Yet, we show

that by slightly increasing the size of the orphan pool from the default capacity

of 100 transactions to 1,000 transactions, the network overhead can be signif-

icantly reduced with negligible performance overhead. Increasing the timeout

of orphan pool eviction, however, does not have any positive effects.

• We examine the effect of churn on transactions becoming orphan. We őnd that

roughly 25% of transactions received by the node immediately after it rejoins

the network become orphan. However, as the node stays connected to the

network for long, this fraction reduces signiőcantly. In addition, roughly 50%

of orphan transactions arrive within the őrst two hours after a churning node

rejoins the network. We őnd that orphan transactions repeatedly get evicted

from the orphan pool in the őrst two hours. Therefore, it may be beneőcial

for churning nodes to be conőgured with a larger orphan pool size to minimize

unnecessary network overhead.

16

Road map

The rest of this thesis is organized as follows. In Chapter 2 , we provide background

information on concepts required to understand the content of the following chapters.

We also survey literature relevant to our work. We introduce our novel log-to-őle sys-

tem, characterize churn in the Bitcoin network, study its impact on the performance

of the protocol, and present and evaluate a novel synchronization scheme to mitigate

the harmful effects of churn on the Bitcoin protocol in Chapter 3 . We present a

comparison of performance of three different block relay protocols in realistic network

conditions in Chapter 4 as well as in-depth analyses of the compact and Graphene

block relay protocols. In Chapter 5 , we study circumstances that make transac-

tions orphan and properties of their parents, the impact of varying default parameters

related to the orphan pool, and the relation between churn in the Bitcoin network and

transactions received by a churning node that become orphan. Chapter 6 discusses

possible future works and concludes the thesis.

17

Chapter 2

Background and related work

In this chapter, we őrst take a look at the blockchain technology. We explain in

detail the underlying components of a blockchain in Section 2.1 . Next, in Sec-

tion 2.2 , we describe in particular the Bitcoin blockchain and its variant, Bitcoin

Unlimited. We also outline the different block relay protocols employed by these

blockchain systems. In Section 2.3 , we give an overview of orphan transactions.

This background information forms the basis for understanding the work and results

presented in Chapters 3 to 5 . Finally, we survey the literature relevant to the

work presented in this thesis in Section 2.4 .

2.1 Preliminaries

We give background information on the basic underlying components of a general

blockchain in this section.

2.1.1 Transaction

A transaction is simply a transfer of token such as cryptocurrency, digital assets, etc.,

from one or more source accounts to one or more destination accounts. An account

in a blockchain system is usually a public-private key pair. The public key identiőes

the entity to whom tokens are transferred whereas the holder of the account signs the

transaction transferring the aforementioned token with their private key.

A transaction may have multiple inputs and multiple outputs. The inputs of a

18

Out

Out

OutIn

In

0x1234

0xfedc

0xaaaa

5.13 BTC

10 BTC

20.5 BTC

1 BTC

0xc0de

Out

OutIn

In

20 BTC0xabcd

0xb33f 10 BTC

0x1337
30 BTC

In0xc3d3 10 BTC

Figure 2·1: A Bitcoin transaction with multiple input accounts and
multiple output accounts. The difference between the total input value
and the total output value is the transaction fee.

transaction are outputs of a parent transactions each of which can only be claimed

once so as not to spend the same token several times. The sum of the values of the

inputs must be greater than or equal to the sum of the values of the outputs. The

difference between the sum of the values of the inputs and the sum of the values of

the outputs is called the transaction fee. Each transaction has a unique identiőer.

Figure 2·1 shows an illustration of a couple of Bitcoin transaction with unique

identiőers (i.e., 0x1337 and 0xc0de). The transaction on the right (i.e., with identiőer

0xc0de) spends from the outputs of the transaction on the left (i.e., with identiőer

0x1337). The latter has input values that sum to 40 BTC and output values that

sum to 35.13 BTC where the difference between the two sums, i.e., 4.87 BTC, is the

transaction fee. Similarly, the former has input values that sum to 35.13 BTC from

which it spends 31.5 BTC with the remaining amount, i.e., 3.63 BTC, paid as the

transaction fee.

2.1.2 Block

A block is a collection of transactions that have not yet appeared in any of the previous

blocks. It is the record keeping mechanism of a blockchain system. Each block usually

contains
(

i
)

a header that contains metadata about the block, and
(

ii
)

the actual

transactions [126ś128]. The block identiőer is simply the hash of the contents of the

19

tx1
tx2

txn

. . .

prev_block
. . .

. . .

Figure 2·2: An illustration
of a block.

block. In Bitcoin, a new block is created, on av-

erage, every 10 minutes. Figure 2·2 shows an

illustration of a block.

Transactions are included in topological order

in blocks [129]. Suppose that there are two trans-

actions, txA and txB, and that the latter spends

from the former. Then, txA must either appear

in a previously created block, or in an order such

that txA appears before txB in the same block.

In Bitcoin, a merkle tree [130] is created by

placing transactions as leaves of a binary tree and

then repeatedly concatenating and hashing their

identiőers together. The root of the binary tree is called the merkle root. It is placed

inside the header of the block so that any recipient of the block can verify the validity

of the transactions in the block. Figure 2·3 shows an illustration of a merkle tree.

Different blockchains may use variants of the merkle tree [131] or another scheme

altogether [132].

HABCD = H (HAB + HCD)

HAB = H (H (txA) + H (txB))

txA

H (txA)

txB

H (txB)

HCD = H (H (txC) + H (txD))

txC

H (txC)

txD

H (txD)

Figure 2·3: An illustration of a merkle tree created by transactions
txA, txB, txC, and txD. The node with the value HABCD is called the
merkle root of the tree.

20

2.1.3 Miner

Mining is the process of packing transactions into blocks. A miner is a participant of

the blockchain network that gathers transactions to put inside a block. Once included

in a block, a transaction becomes őnalized and irreversible as more blocks are mined

on top of the block containing it.

Miners are usually incentivized to stay honest by providing to them monetary

beneőts: every time a new, valid block is created, the miner who created the block

is rewarded with new minted cryptocurrency. For example, at the time of writing, in

Bitcoin, miners are rewarded 6.25 BTC for mining a new block. In addition, miners

can keep fees for all transactions included in the block that they mine.

To make sure other participants of the network trust and accept the blocks created

by miners, the latter must follow a consensus protocol to mine a new block. At present,

there are several consensus protocols that exist in the blockchain space [133ś135],

e.g., proof of work [1], proof of stake [136, 137], proof of elapsed time [138], etc.

Bitcoin follows the proof of work consensus protocol which requires miners to solve a

computationally expensive mathematical problem to prove their honesty.

2.1.4 Blockchain

A blockchain is a distributed, decentralized ledger that records a history of trans-

actions that take place in an associated network. It is a chronologically ordered

collection of blocks that are chained together with cryptographic hashes of previous

blocks. This makes the blockchain immutable, i.e., it is practically impossible (as

long as the underlying cryptography is secure) for an adversary to tamper with the

data recorded in the blockchain without controlling a signiőcant amount of resources.

Conventional scheme such as transferring money between two parties usually in-

volves a centralized entity such as a bank. Blockchains, on the other hand, are

21

tx1
tx2

txn

. . .

prev_block
. . .

. . .

tx1
tx2

txn

. . .

prev_block
. . .

. . .

tx1
tx2

txn

. . .

prev_block
. . .

. . .

tx1
tx2

txn

. . .

prev_block
. . .

. . .

... ...

Figure 2·4: An illustration of a blockchain. Each block is cryptograph-
ically linked to the previous creating an unalterable chain of blocks.

decentralized and reduce the amount of trust placed in a single actor. Instead they

require an entire network of users to establish and maintain consensus who are often

provided economic incentives to remain honest.

A blockchain may be permissionless where anybody can view the records em-

bedded in the blockchain and any entity with enough resources can mine a new

block. On the other hand, a blockchain may be permissioned , incorporating an ad-

ditional access control layer and, thereby, limiting who can read from or append to

the blockchain. Bitcoin’s blockchain is permissionless, i.e., anyone can read from it

and write to it if they have enough resources to solve a complex mathematical prob-

lem (see Section 2.1.3). ConsenSys’ Quorum blockchain [139], on the other hand,

is permissioned allowing only certain authorized entities to access and/or modify it.

Figure 2·4 illustrates a blockchain.

2.2 Bitcoin and Bitcoin Unlimited

In this section, we őrst comprehensively introduce the Bitcoin blockchain and then

give an overview of an implementation ś called Bitcoin Unlimited ś of its variant

Bitcoin Cash. Next, we explain the data structures employed in block relay protocols

which we also describe in greater detail.

22

2.2.1 Bitcoin

The Bitcoin cryptocurrency, originally introduced by Satoshi Nakamoto in 2008 [1]

as a peer-to-peer electronic payment system, is currently used for buying and sell-

ing a wide variety of goods in different markets across the globe including Virgin

Galactic [33], AT&T [34], Newegg [35], and more. At the time of writing, the cryp-

tocurrency has a total market capitalization of well over one trillion USD [36]. Bitcoin

uses a blockchain to record all transactions that take place in the Bitcoin network [45].

Each new transaction is broadcast over the network, and thereafter recorded by every

node in its local memory pool (known as a mempool) for subsequent consensus-based

validation. Transactions stay in the mempool until conőrmed by a Bitcoin miner [140]

and added to a block in Bitcoin’s blockchain. Every day, hundreds of thousands of

transactions are created and conőrmed in the Bitcoin network [141], resulting in close

to 690 million transactions (at the time of writing) since its inception [142]. By de-

sign, a new block containing transactions is created by a miner and propagated over

the network’s nodes on average once every ten minutes [126].

Before relaying a transaction to its peers, a node in the Bitcoin network must

conőrm that the transaction has veriőed currency input from its parent transactions.

If a transaction’s parents are not in the node’s mempool or local blockchain, then the

transaction is classiőed an orphan (see Section 2.3), and it is not relayed further

until the parents arrive. We seek to more precisely understand the context under

which a transaction becomes an orphan in Chapter 5 .

Bitcoin employs the proof-of-work [1] algorithm to maintain consensus in the sys-

tem whereby a miner must do some work to solve a complex mathematical problem

in order to create a new block which can be added to the blockchain. The amount of

work that a miner needs to do is determined by the current network difficulty [143]

which determines how difficult it is to create a new block. It depends on the total

23

mining power of the network which is close to 160 × 1018 hashes per second at the

time of writing [144].

Once a miner creates a new block, it is propagated to other nodes in the Bitcoin

network via the default and compact block relay protocols which we explain in greater

detail in Section 2.2.4 . We study the performance of the compact block relay

protocol extensively in Chapter 3 .

2.2.2 Bitcoin Unlimited

Bitcoin Unlimited is an implementation of the Bitcoin Cash (BCH) protocol which

was forked from the reference implementation of Bitcoin, also known as Bitcoin Core

and őrst released in 2016 [145]. A natural question to ask is: why did there arise a

need to fork Bitcoin Core?

The problem of scalability in Bitcoin is quite well known [146]. The original Bit-

coin protocol placed a 1 MB size limit on a block. While the exact reason remains

unknown, it is speculated that Satoshi Nakamoto placed this limit to prevent adver-

saries from creating very large blocks őlled with invalid transactions and spamming

the network [147]. This resulted in the maximum rate at which transactions could

be committed to the blockchain at roughly 7 transactions per second [47] which was

sufficient at the time. However, over the years, as the popularity of Bitcoin grew,

so did the volume of transactions. In 2010, for example, the number of transactions

conőrmed, i.e., added to a block, per day was recorded at less than 200. In compari-

son, by 2016, this number grew to around 250,000 conőrmed transactions per day - a

roughly 3 orders of magnitude increase [148]. However, roughly 25,000 transactions

still remained unconőrmed, i.e., waiting to be added to a block, per day. Critics of

Bitcoin Core believe that the block size limit is one of the reasons to blame for the

low throughput of transaction conőrmation in Bitcoin.

Enters BCH-compatible Bitcoin Unlimited. It differs from Bitcoin Core mainly

24

in the following ways: a) the block size limit is removed, and b) miners can freely

adjust the block size [149]. Bitcoin Unlimited promises a higher transaction through-

put than Bitcoin Core. While the number of transactions in a Bitcoin Core block

remains strictly below 2,600 [150], Bitcoin Unlimited blocks have been known to con-

tain as many as a little over 24,000 transactions1 [152]. However, with a much smaller

transaction volume than Bitcoin Core in the present day, the full potential of Bitcoin

Unlimited still remains to be seen.

Similar to Bitcoin Core, a new block is generated, or mined, roughly every 10 min-

utes on average in Bitcoin Unlimited. Likewise, a new transaction when announced

is stored in the local memory, dubbed mempool, of every node participating in the

network where it remains until added to a future block. In addition to the default

and compact block relay protocols, Bitcoin Unlimited also implements the Graphene

block relay protocol which explain in greater detail in Section 2.2.4 . We empirically

evaluate the performance of the three block relay protocols in Chapter 4 .

2.2.3 Data structures

We now introduce and explain the underlying data structures employed in the Graphene

block relay protocol which is implemented in Bitcoin Unlimited. We describe the

aforementioned protocol in greater detail in Section 2.2.4 .

Bloom filter. A Bloom filter [153] is essentially a bit-vector, i.e., an array A of

size m where each element in the array can only be either 0 or 1. Given a set S

of n objects, the Bloom őlter allows testing an object s for membership in S. The

bit-vector A representing a Bloom őlter is őrst initialized such that all bits are set to

0, i.e., ∀a ∈ [1,m], A[a] = 0. To represent S as a Bloom őlter, each object si ∈ S,

where i ∈ [1, n], is hashed with predeőned hash functions h1, h2, . . . , hK . The output

1For example, block height: 681765 [151].

25

0

6

0

5

0

4

0

3

0

2

0

1

0

0

H1

H2

H3

(a) Empty Bloom filter. All elements
are initialized to 0. Hash functions H1,
H2, and H3 map an item to locations in
the Bloom filter.

0

6

0

5

1

4

1

3

0

2

0

1

1

0

H1(0xabcd)% 7 = 0
H2(0xabcd)% 7 = 3

H3(0xabcd)% 7 = 4

(b) Bloom filter after inserting 0xabcd

into the filter. Elements at locations ob-
tained as a result of the hash functions
H1, H2, and H3 (shown in green back-

ground) are set to 1.

1

6

0

5

1

4

1

3

0

2

1

1

1

0

H1(0x1337)% 7 = 4
H2(0x1337)% 7 = 6

H3(0x1337)% 7 = 1

(c) Bloom filter after inserting 0x1337

into the filter. Elements at locations ob-
tained as a result of the hash functions
H1, H2, and H3 (shown in green back-

ground) are set to 1.

1

6

0

5

1

4

1

3

0

2

1

1

1

0

H1(0xcaf3)% 7 = 1
H2(0xcaf3)% 7 = 5

H3(0xcaf3)% 7 = 6

(d) Lookup for 0xcaf3 which is defi-

nitely not a member of the Bloom fil-
ter since not all elements at locations ob-
tained as a result of the hash functions
H1, H2, and H3 (shown in red and green

backgrounds) are set to 1.

1

6

0

5

1

4

1

3

0

2

1

1

1

0

H1(0xf00d)% 7 = 3
H2(0xf00d)% 7 = 0

H3(0xf00d)% 7 = 1

(e) Lookup for 0xf00d which is probably a member of the Bloom filter since all elements
at locations obtained as a result of the hash functions H1, H2, and H3 (shown in green

background) are set to 1. Note that this is a false positive since 0xf00d was never inserted
in the Bloom filter.

Figure 2·5: Illustration of Bloom őlter operations.

of each hash function determines a location in the bit-vector, the bit corresponding

to which is set to 1, i.e., ∀i ∈ [1, n], ∀k ∈ [1, K], A [hk(si)] = 1. The object r that

is to be tested for membership in S is hashed against the same hash functions. r is

26

most likely a member of S if all bits corresponding to the locations in A obtained by

hashing it are set to 1, i.e., when the result of

⋂

k∈[1,K]

A [hk(r)]

is 1. r is definitely not a member of S even if a single bit corresponding to the

locations in A obtained by hashing it is set to 0, i.e., when the result of

⋂

k∈[1,K]

A [hk(r)]

is 0.

The Bloom őlter is a probabilistic data structure. Given a set of objects S and a

Bloom őlter A of size m, denote with Pfp the probability that a false positive and with

Pfn the probability that a false negative occurs as a result of the test of membership

of an object r in S. While a Bloom őlter does allow false positives, i.e., Pfp ≥ 0, false

negatives can never occur, i.e., Pfn = 0. Further, Pfp is conőgurable and depends on

the number of objects in the set, i.e., |S|, the size of the Bloom őlter, i.e., m, and

the number of predeőned hash functions, i.e., K [154, 155]. Figure 2·5 shows an

illustration of Bloom őlter operations.

Invertible Bloom lookup table. A Bloom őlter does not allow listing of all mem-

bers of the set that it represents. This operation can be performed with an invertible

Bloom lookup table (IBLT) [156, 157] which, in addition to the insertion and lookup

operations, also supports listing members of a set.

Given two sets of objects S1 and S2 where the contents of the sets are not identical,

IBLTs can be used to efficiently őnd the symmetric differences between the two sets.

We represent the two sets S1 and S2 each with an IBLT IS1
and IS2

, respectively. The

symmetric difference between the two sets, i.e., DS1−S2
or, conversely, DS2−S1

, can

27

Listing 1: Workŕow of the default block relay protocol. SRC and DST are peers
where the former sends a default block which the latter receives.
1 SRC: send headers to DST for block G
2 DST: request block G from SRC via getdata
3 SRC: send block G to DST via block
4 DST: process block G and relay to peers

then be found by őrst subtracting the IBLTs from one another using a process dubbed

as the peeling process, i.e., I ′ = IS1
− IS2

, and then őnally decoding the difference

I ′ [158]. The decoding process is successful if all symmetric differences between S1

and S2 are found. Otherwise, the decode process has failed. Similar to a Bloom

őlter, an IBLT is a probabilistic data structure, and there is a non-zero probability

that the decode process will fail. When this happens, the process can be repeated by

modifying the parameters that govern the size of the IBLTs.

2.2.4 Block relay protocols

When a node in the Bitcoin network receives a new block from one of its peers, it

processes the block and relays it forward to its remaining peers. This relay of blocks

allows the trust-less Bitcoin network to maintain consensus on valid transactions and

balances available in wallets (or user accounts). We describe next the three block

relay protocols of interest that are implemented in Bitcoin and Bitcoin Unlimited

which we evaluate empirically in Chapters 3 and 4 .

For the purpose of explaining the protocols, we consider two nodes SRC and DST

that are connected to one another. SRC is a source node that relays information to

DST which is the destination node.

Default (normal) block relay. The original block relay protocol implemented by

Satoshi Nakamoto in Bitcoin is the normal block relay protocol [1] or the default block

relay protocol. In this protocol, blocks are relayed with full transactions included

28

Listing 2: Workŕow of the compact block relay protocol. SRC and DST are peers
where the former sends a compact block which the latter receives.

1 SRC: send headers to DST for block G
2 DST: request block G from SRC via getdata
3 SRC: send block G to DST via cmpctblock
4 DST: attempt to reconstruct block G
5 if reconstruct successful, i.e., no missing transactions in block G then
6 DST: process block G and relay to peers

7 else
8 DST: request missing transactions from SRC via getblocktxn
9 SRC: send requested transactions to DST via blocktxn

10 DST: reconstruct block G
11 DST: process block G and relay to peers

which often results in a waste of bandwidth since the receiving node most likely

already received these transactions from its peers earlier. Listing 1 shows the

process of the default block relay. SRC announces the availability of a new block by

sending the block’s header to DST via a headers2 message. DST requests the block

from SRC if it is not already present in its inventory by sending a getdata message

to the latter. SRC then responds with the full block via the block message. DST

processes the block which includes, among other steps, validating the block header,

validating the transactions within the block, removing transactions included in the

block from its mempool, and so on. DST then propagates the block to its other peers.

Compact block relay. The compact block relay protocol was introduced to Bit-

coin Core in 2016 [54] and implemented in Bitcoin Unlimited in 2019 [159]. Unlike

a default block which contains full transactions, the compact block only contains

a 6-byte hash of each transaction with only a few full transactions (including the

coinbase transaction). We evaluate the usefulness of these extra full transactions in

Section 4.2.4 . This process reduces the bandwidth required to propagate a block

2Note that newer versions of Bitcoin Unlimited replace the legacy inv message with the headers

message for the purpose of block relay.

29

by several orders of magnitude. The protocol works under the assumption that the re-

ceiver of the block already has in its mempool all transactions that are representative

of the 6-byte hashes contained in the block.

Listing 2 shows the relay of a compact block. SRC announces the availability of

a new block by sending a headers message to DST who requests the block using the

getdata message if the block is not already present in its inventory. SRC responds with

the cmpctblock message which contains the block header, some full transactions, and

6-byte hashes of the remaining transactions. If no transactions that correspond to the

6-byte hashes in the block are missing from its mempool, DST is able to successfully

reconstruct the block, and propagate it to peers. This scenario is represented by

lines 5-6 in the listing.

If DST cannot őnd all transactions in its mempool that correspond to the 6-byte

hashes that are included in the block, the compact block reconstruction fails. This is

represented by lines 7-11 in Listing 2 . DST requests these missing transactions by

sending a getblocktxn message to SRC who responds with the requested transactions

in a blocktxn message. DST is now able to successfully reconstruct the block and

propagate it forward to peers. It is evident that recovering missing transactions

requires extra round-trip communication which incurs delay in propagation of the

block and consumes additional bandwidth.

Note that, to the best of our knowledge, unlike Bitcoin Core that supports both

low bandwidth and high bandwidth modes in the compact block protocol, Bitcoin Un-

limited only supports the low bandwidth mode [160] whereby a node only propagates

a block forward after fully validating it locally. We refer the reader to the docu-

mentation of the compact block protocol for further details on the two modes [54].

Listing 2 depicts the low bandwidth mode of the protocol. We emphasize, however,

that regardless of the mode of operation chosen by two peers to exchange information

30

in, if a receiver’s mempool contains all the transactions whose hashes are contained

in a compact block that it received, only then will it be able to successfully recon-

struct the original block. However, if not all transactions are already in the node’s

mempool then it will fail to reconstruct the block resulting in additional consumption

of network resources.

Graphene block relay. The Graphene block relay [55, 123] protocol is a more

complex protocol that uses probabilistic data structures, namely Bloom őlters and

invertible Bloom lookup tables (IBLTs) to relay blocks (see Section 2.2.3 for back-

ground on both). The combination of these data structures further reduces the size

of the block and, consequently, the bandwidth required to relay blocks.

We next examine the Graphene block relay protocol in detail. Listing 3 shows

the workŕow of the Graphene block relay protocol. SRC announces the availability

of a new block to DST via the headers message. If DST does not already have the

block in its inventory, it sends a request to SRC with a get_grblk message along

with the size m of its mempool, i.e., the number of transactions in its mempool.

SRC encodes the hashes of transactions in the block in a Bloom őlter B and an

IBLT I. It uses m as a parameter to determine the sizes of these data structures

which in turn determines the number of symmetric differences that can be recovered

from I. SRC then sends the Bloom őlter B and the IBLT I to DST with the grblk

message. DST collects hashes of all transactions currently in its mempool and orphan

pool [38, 39] and passes them through the Bloom őlter B. It creates a candidate

set C of transactions whose hashes successfully pass through the őlter. DST then

uses C to construct a local IBLT I ′, performs the subtraction operation, i.e., I − I ′,

and attempts to extract the transaction hashes encoded in I by decoding the result

obtained from the subtraction operation. If the decoding process is successful and

DST has in its mempool and/or orphan pool all transactions that are included in the

31

Listing 3: Workŕow of the Graphene block relay protocol. SRC and DST are
peers where the former sends a Graphene block which the latter receives.

1 SRC: send headers to DST for block G
2 DST: request block G from SRC via get_grblk
3 SRC: encode hashes of transactions in block G into Bloom őlter B and IBLT I
4 SRC: send B and I to DST in grblk
5 DST: create transaction candidate set C from transactions in mempool and

orphan pool whose hashes pass through B
6 DST: create IBLT I ′ from C
7 DST: attempt to extract encoded transaction hashes, i.e., őnd I − I ′, and decode

result
8 if IBLT subtraction I − I ′ and decode successful then
9 DST: attempt to reconstruct block G

10 if reconstruct successful, i.e., no missing transactions in block G then ▷ ①
11 DST: process block G and relay to peers

12 else ▷ ②
13 DST: request missing transactions from SRC via get_grblktx
14 SRC: send requested transactions to DST via grblktx
15 DST: reconstruct block G
16 DST: process block G and relay to peers

17 else ▷ IBLT subtraction and decode failed; initiate failure recovery
18 DST: create Bloom őlter F of transaction set C
19 DST: request failure recovery from SRC by sending F via get_grrec
20 SRC: őnd set C ′ of transaction that are in block G but not in Bloom őlter F
21 SRC: create IBLT J
22 SRC: send set C ′ and IBLT J to DST via grrec
23 DST: create IBLT J from candidate set C ∪ C ′

24 DST: attempt to extract encoded transaction hashes, i.e., őnd J − J ′, and
decode result

25 if IBLT subtraction J − J ′ and decode successful then
26 DST: attempt to reconstruct block G
27 if reconstruct successful, i.e., no missing transactions in G then ▷ ③
28 DST: process block G and relay to peers

29 else ▷ ④
30 DST: request missing transactions from SRC via get_grblktx
31 SRC: send requested transactions to DST via grblktx
32 DST: reconstruct block G
33 DST: process block G and relay to peers

34 else ▷ ⑤
35 DST: initiate fail-over mechanism by requesting default block

32

block, it reconstructs and processes the block, and then propagates it to its peers.

This scenario is represented by the code branch marked by ① in Listing 3 .

However, even if the subtraction operation I−I ′ and the successive decoding oper-

ation are successful, there may be some transactions in the block that are missing from

the mempool and orphan pool of DST. In this case, DST needs to recover the missing

transactions before it can process the block. DST does this by sending a get_grblktx

message to SRC who responds with the requested transactions in a grblktx message.

DST is now able to successfully reconstruct the block, process it, and propagate it

to peers. Note that similar to compact block relay, recovering missing transactions

requires an extra round-trip communication and delays the propagation of the block

in addition to consuming additional bandwidth. This scenario is represented by the

code branch marked by ② in Listing 3 .

Next, we look at the case when the subtraction operation I−I ′ and the successive

decode operation are not successful. This may happen when DST is missing too many

transactions from its mempool. It, thus, cannot create a transaction candidate set

C and, consequently, an IBLT I ′ that is sufficient to perform the subtraction and

decode operations successfully. When this happens, DST enters failure recovery [161]

with SRC. This step requires extra round-trip communication to recover from the IBLT

decode failure which further delays block propagation and consumes extra bandwidth.

To perform failure recovery, DST creates a new Bloom őlter F and inserts into it

hashes of the transactions from the candidate set C. This enables SRC to determine

which transactions are present in DST’s mempool. DST then sends F to SRC with a

get_grrec message. SRC creates a new set of transactions C ′ that is comprised of

the transactions that are in the block but whose hashes are not in F . It also creates

a revised IBLT J adjusting for the false positives that appear in F , and then sends

C ′ and J to DST as a grrec message. DST creates a new candidate set of transactions

33

C∪C ′. It locally creates an IBLT J ′ from this candidate set and uses it to extract the

transaction hashes encoded in J by őrst performing the subtraction operation J − J ′

and then decoding the result of the subtraction operation.

If the subtraction and decode operations are successful, DST attempts to recon-

struct the block. If at this point, there are no transactions missing from its mempool,

DST successfully reconstructs the block, processes it, and propagates it forward to

peers. This scenario is represented by the code branch marked by ③ in Listing 3 .

If, however, there are still some transactions missing from its mempool, DST re-

quests these transactions from SRC. Upon receiving the missing transactions, DST

successfully reconstructs the block, processes it, and propagates it forward to peers.

Note that this scenario requires yet another round-trip communication further delay-

ing block propagation and consuming additional bandwidth. This scenario is repre-

sented by the code branch marked by ④ in Listing 3 .

One may wonder why there may still be missing transactions after failure recovery.

This may be because the Bloom őlter has a non-zero probability of false positives (see

the discussion in Section 2.2.3) and SRC may falsely conclude that there already

exists a transaction in Bloom őlter F and not include it in the set of transactions

C ′. In this case, DST may end up in a situation where it needs to perform another

round-trip communication to recover transactions that are included in the block but

not present in its mempool.

Finally, if the subtraction operation J−J ′ and the successive decode operation also

fail, DST must fall back to a fail-over mechanism by requesting a full block (as in the

default protocol) instead of a Graphene block from SRC. This scenario is represented

by the code branch marked by ⑤ in Listing 3 .

34

2.3 Orphan transactions

A node in a blockchain network may receive a transaction that spends income from

one or more yet unseen parent transactions (i.e., the parents are neither included in

any of the previous blocks of the blockchain nor exist in the node’s local transaction

pool dubbed mempool). The node cannot accept the newly received transaction

into its mempool until it can verify that the transaction spends valid token, and it

thus requests the missing parents from the peer that originally sent the transaction.

In the meanwhile, the transaction is classiőed as an orphan transaction and added

to an orphan pool. In Bitcoin, for example, the orphan pool is maintained in the

mapOrphanTransactions data structure in the Bitcoin core software. The transaction

is not propagated forward to other peers until all of its missing parents are found.

We characterize orphan transactions in Bitcoin and study their impact on

the blockchain system in Chapter 5 . In this system, once the orphan trans-

action is added to the orphan pool, there are six cases that can cause its re-

moval (corresponding to lines 76, 2331, 2326−2330, 1609−1620, 876−906, 800−806,

40, 784−794, 627, 757−771, 1624−1632, and 1608 in the core implementation of

netprocessing.cpp [162]):

1. Parent transactions received. The node receives a parent it requested from

its peer. It then processes any orphan transactions that depend on the newly

received transaction. All transactions that are no longer orphan are removed

from the orphan pool and added to the mempool.

2. Parent transactions in block. The node receives a new block but does not

directly check if it contains missing parents of an orphan transaction. Instead,

for every transaction in the block, it checks whether an existing orphan transac-

tion spends from an input of the former and removes the latter from the orphan

35

pool if it does. This may be useful when orphan transactions and their missing

parents are in the same block, or when a missing parent is received in a previous

block.

3. Orphan pool full. By default, the size of the orphan pool is capped to a

maximum of 100 orphan transactions. When the orphan pool is full, an orphan

transaction is chosen at random and removed from the pool, and this transaction

is not added to the mempool. The maximum size of the orphan pool can

be modiőed at startup by using the -maxorphantx argument when running

bitcoind or bitcoin-qt, or set in the bitcoin.conf conőguration őle [163].

4. Timeout. By default, an orphan transaction expires and is removed after 20

contiguous minutes in the orphan pool.

5. Invalid orphan transaction. The node deems that an orphan transaction is

invalid when the missing parents of the orphan transaction have been received,

but the orphan transaction itself may be non-standard or not have sufficient fee.

Thus, this orphan transaction is not accepted to the mempool. Furthermore,

not only the orphan transaction is removed from the orphan pool, but also the

peer that originally sent the orphan transaction is punished, i.e., no further

transactions are accepted to the mempool from the peer in the current round.

6. Peer disconnected. When a peer disconnects from a node, all orphan trans-

actions sent by this peer are removed from the orphan pool in the őnalization

step. This is likely because the node no longer expects to receive the parents it

requested from the peer. The orphan transaction is not added to the mempool.

A transaction may get stuck [164] in mempools of nodes due to low transaction

fees. That is, the transaction is not included in blocks and faces delays in conőrmation.

Bitcoin does allow the transactions to be modiőed to increase the fee [165], and the

36

originator of the transaction may add a new input, i.e., a new parent, as a spending

source for the increased fee. The transaction may become orphaned if the new input is

missing from the receiving node’s mempool or local blockchain, and this transaction is

then added to the orphan pool. We do not classify such orphan transactions separately

because they do make it to the orphan pool.

2.4 Related work

In this section, we survey literature relevant to the work presented in this thesis.

We őrst present commentary on works relevant to existing measurement tools in the

blockchain space in Section 2.4.1 . Next, we review works applicable to block propa-

gation and churn, and orphan transactions in the Bitcoin network in Sections 2.4.2

and 2.4.3 , respectively. In Section 2.4.4 , we summarize the differences in the lit-

erature and the work in this thesis.

2.4.1 Measurement tools

Neudecker [113] built a tool (that is not publicly available) for monitoring different

aspects of the Bitcoin network. Though this tool provides valuable information on

general network properties, including end-to-end propagation delays and churn, it

does not provide detailed information about events related to the propagation of

transactions and blocks at individual nodes, which is crucial for understanding the

causes of delays and network inefficiencies.

Kalodner et al. [166] present BlockSci, a blockchain analysis tool designed to

performs an analysis on transaction graphs, scripts, block indexes and other additional

data which are view-able by the end-user. Though this tool is geared towards analysis

of privacy and forensics, it lacks the ability to perform analysis on parameters such as

propagation times of blocks, transactions missing from blocks, etc., which our logging

system is able to achieve.

37

2.4.2 Block propagation and churn

Stutzbach and Rejaie [99] study churn in several peer-to-peer networks, speciőcally

Gnutella, BitTorrent, and Kad. By inserting crawlers into each network, they char-

acterize various metrics, such as peer inter-arrival time, session lengths, peer up time,

peer down time etc., and őt distributions to the respective metrics. The authors

state that łone of the most basic properties of churn is the session length distribution,

which captures how long peers remain in the system each time they appearž. Our

work characterizes the statistics of session lengths and churn in the Bitcoin network,

which to our knowledge have not been studied so far. Furthermore, our work is not

limited to statistical characterization of churn, but also evaluates the impact of churn

on the behavior of the Bitcoin network with respect to the efficacy of the compact

block protocol.

Apostolaki et al. [111] simulate partitioning attacks on the Bitcoin network. In a

partitioning attack, an attacker divides the network into multiple disjoint components,

where no information ŕows between any two components. The authors incorporate

churn in their simulations and assume that session lengths follow exponential distri-

butions. We show in our work that, on an aggregate level, session lengths are better

modeled by heavy-tailed distributions.

Decker and Wattenhofer [45] measure the time it takes for a block to propagate

in the Bitcoin network. They show that the delay in propagation of blocks in the

network results in forks in the Bitcoin blockchain. Since only one branch of the

fork becomes part of the blockchain, nodes that create blocks in the other branch(es)

essentially waste their power. Forks in the blockchain also lead to a phenomenon called

information eclipsing which an adversary can leverage to perform a double spending

attack. However, that work was published before the compact block protocol was

implemented, i.e., each block contained full transactions and no reconstruction was

38

needed. Therefore, it does not capture the current behavior of block propagation,

including additional delay incurred due to missing transactions in a compact block

received by a node. We show in this work that churn can increase propagation delays

of compact blocks received by a node in the Bitcoin network.

Neudecker et al. [110] study churn in the Bitcoin network from an attacker’s

perspective. They vary the session length of an attacking node in the Bitcoin network

and, through simulations, show that a network partitioning łattack is sensitive to

churn of the attacking node.ž However, they do not characterize churn in the network,

and thus, it is unclear what is the basis for the parameters used in the simulations.

Karame et al. [112] study the security of using Bitcoin in fast payments, such as

paying for a meal at a fast-food restaurant. They theorize that because of churn in

the Bitcoin network, the connectivity of a victim node with the rest of the network

varies with time. This gives an adversarial node considerable opportunities to connect

with a victim node and perform a double spend attack. However, the authors neither

characterize churn nor take it into account when performing analysis, measurements

and experiments.

Augustine et al. [167] and Jacobs et al. [168] propose algorithms for efficient search

and retrieval of data items in churn-tolerant peer-to-peer networks. These algorithms

can help churning nodes retrieve transactions that they missed while being discon-

nected from the network. The algorithms assume that a churning node knows a-priori

the ID of a peer that has the required data. Such an assumption does not hold in

Bitcoin because Bitcoin is an unstructured peer-to-peer network [1]. Speciőcally, a

node in Bitcoin does not know in advance which peer stores the data that it needs,

and thus it broadcasts data requests to multiple peers [169].

Mišić et al. [170] study the improvements brought upon by the compact block relay

protocol on the Bitcoin network. The queuing analysis presented by the authors shows

39

that while the compact block relay protocol improves delivery times of blocks by up

to 20% and reduces the probability of forks occurring in the network by up to 25%, it

requires high transaction traffic to successfully recover transactions from their hashes

in the compact blocks. However, the authors do not account for the presence of churn

in the Bitcoin network when evaluating the performance of the compact block relay

protocol.

Motlagh et al. [171ś174] present an analytical model for the churning process in

the Bitcoin network using continuous time Markov chain. The authors point out that

churning nodes in the Bitcoin network not only affect the propagation of blocks in

the network, but also consume network resources to synchronize their local copy of

the blockchain with the rest of the network upon rejoining it. While these works

complement our őndings in this thesis, the authors present results from simulations

based on an assumption that all churning nodes have the same session lengths. We

present results based on data from the live Bitcoin network where session lengths

of churning nodes are sampled from the actual distribution of up and down time of

nodes in the network.

Ozisik et al. [123] propose the Graphene protocol, which couples an Invertible

Bloom Lookup Table (IBLT) [156] with a Bloom őlter in order to send transactions

in a package smaller than a compact block. According to the authors, the size of

a Graphene block can be a őfth of the size of a compact block, and they provide

simulations demonstrating their system. This block propagation concept has recently

been merged into the Bitcoin Unlimited blockchain. However, similar to the compact

block protocol, Graphene assumes a large degree of synchronization between mem-

pools of sending and receiving peers. In case of missing transactions, the receiving

peer requests larger IBLTs from the sending peer, thus potentially adding signiőcant

propagation delay.

40

Mišić et al. [120] show that synchronizing mempools of churning nodes when they

rejoin the network not only decreases the chances of missing transactions from com-

pact blocks, but also reduces unnecessary network traffic when retrieving the afore-

mentioned missing transactions from peers. While this work is complementary to

our őndings in this thesis, the authors present simulation-based őndings whereas we

report results from live Bitcoin nodes with an implementation of a synchronization

protocol in the Bitcoin software.

Saad et al. [175] identify an inefficiency in the way Bitcoin Core relays blocks and

transactions to peers which could potentially add several seconds of delay in their

propagation to peers. The authors also show that the number of synchronized nodes

that churn in the Bitcoin network in a 10-minute interval has almost doubled from

2019 to 2020 thereby reducing the synchronization of the network. However, the

authors do not show how this affects the propagation of information in the Bitcoin

network.

Naumenko et al. [176] propose the Erlay transaction dissemination protocol, the

aim of which is to reduce the consumption of bandwidth due to dissemination of

transactions across nodes in the Bitcoin network. The protocol uses set sketches to

perform set reconciliation across mempools of nodes. The authors do not evaluate

the protocol in the presence of churn, and it is unclear whether Erlay would perform

efficiently when a node misses a large number of transactions from a block that it

receives. We show in this work that a block received by a churning node can miss as

many as 2,722 transactions.

Rohrer et al. [67] present Kadcast, a protocol which, unlike mainstream blockchain

systems such as Bitcoin or Ethereum, uses a structured overlay network to propagate

blocks in the blockchain networks. The authors show via simulations that their pro-

tocol performs better in terms of propagation delay of blocks than łVanillaCastž, a

41

framework representative of most blockchain networks. To the best of our knowledge,

however, the authors do not account for churn in their simulations. It is, therefore,

not known how well the protocol performs in such conditions.

2.4.3 Orphan transactions

To the best of our knowledge, there is little work in the Bitcoin research literature

regarding orphan transactions. Nevertheless, the few works that do consider them

highlight the potential value of the area, and the need for further work.

Miller and Jansen [41] take advantage of the fact that in the older version of

Bitcoin (i.e., v0.9.2), the protocol did not keep track of the peer that sent an or-

phan transaction. They propose that an adversary can leverage this vulnerability to

mount a denial of service attack by sending a large number of orphan transactions

to the victim node. The latter would be stuck verifying the transaction signatures of

orphan transactions for a long time. However, this threat model is outdated since,

in the current version, the Bitcoin protocol does keep track of the sender of an or-

phan transaction. The work also does not present a characterization of the orphan

transactions.

Delgado-Segura et al. [40] present TxProbe, a technique that makes use of orphan

transactions to deduce the topology of the Bitcoin network. In this approach, an

adversary creates a pair of double-spending transactions, and propagates each to a

different node. The nodes try to propagate the double-spending orphan transaction

to one another, if there exists an edge between the two. However, each of the receiving

node rejects the incoming transaction as an invalid double-spending transaction. The

adversary then sends a transaction that spends from one of the double-spending

transactions to the node that received the corresponding double-spending transaction.

This latter node will propagate the new transaction to the second node, if there exists

an edge between the two. However, the second node will add the new transaction to

42

its orphan pool, since it already rejected its parent earlier. The adversary can then

probe the second node for the orphan transaction to establish a side-channel: if the

node responds with the orphan transaction, the adversary deduces that there exists

an edge between the two nodes that received the pair of double-spending transactions.

The authors then extend this basic approach to a larger Bitcoin graph. Though this

work presents an interesting side-channel in the Bitcoin network, it also does not

characterize orphan transactions.

Earlier version of Bitcoin software did not place a limit on the number of orphan

transactions that a node can store. Thus, an adversary could launch a denial of service

attack by sending a large number of orphan transactions to a victim node, causing

memory exhaustion and system failure. Furthermore, the Bitcoin software did not

contain validation checks for the size of an orphan transaction. Hence, an adversary

could create an orphan transaction with an arbitrarily large size and cause memory

exhaustion at the victim node [177]. Both of these vulnerabilities were responsibly

reported and őxed [42, 178]. While our work proposes increasing the size of the

orphan pool, the current validation checks should ensure that this change will not

enable denial of service attacks.

2.4.4 Summary

In this section, we highlight the shortcomings in the related work surveyed in Sec-

tions 2.4.1 to 2.4.3 .

• Existing tools that facilitate extraction of data from blockchains are either
(

i
)

not publicly available; or
(

ii
)

limited in scope of what they can measure. There-

fore, they do not provide adequate support to study occurrence and impact of

natural phenomena such as churn and orphan transactions in the blockchain

systems.

43

• The works surveyed above
(

i
)

do not seek characterization of churn while in-

corporating it in the analyses presented thereby making the choice of relevant

parameters unclear;
(

ii
)

evaluate the impact of churn on simulated data; and/or
(

iii
)

do not show the effects of churn on the performance of the Bitcoin net-

work. The characteristics and impact of churn in the Bitcoin network thus

remain unknown.

• Prior work uses orphan transactions in the Bitcoin network to infer the topology

of the network. However, it does not seek a characterization of the orphan

transactions or study their performance overhead. Furthermore, the relationship

between the churn behavior of a full node and the transactions that it receives

becoming orphan remains unknown.

In Chapters 3 to 5 , we őll these gaps through application of empirical and

statistical methods.

44

Chapter 3

Churn in the Bitcoin network

A key challenge for the Bitcoin network lies in reducing the propagation time of blocks.

The compact block relay protocol [54] (described in greater detail in Section 2.2.4)

was proposed to help address this challenge, and it is currently implemented on the

standard Bitcoin Core reference implementation. This protocol aims to decrease block

propagation time to the broader network by reducing the amount of data propagated

between nodes. However, as with other peer-to-peer networks, it is also important

that the Bitcoin network be able to support a high rate of churn [99], that being the

rate at which nodes independently enter and leave the network. That is, the network

should be able to quickly propagate blocks to all current nodes, even when some of

these nodes frequently enter and leave the network. While churn has been extensively

studied in different peer-to-peer networks [99ś105], it has received little attention in

relation to blockchains [49, 106ś112]. As a result, questions remain about the extent

of churn in the Bitcoin network and its effect on the relay of blocks.

We answer the abovementioned questions in this chapter based on our work pub-

lished in the proceedings of the IEEE International Conference on Blockchain and

Cryptocurrency 2019 [68], and the IEEE Transactions on Network and Service Man-

agement [69]. The rest of the chapter is organized as follows. In Section 3.1 , we

describe our methodology for obtaining and processing data on churn in the Bitcoin

network, and conduct a statistical analysis of the data. In Section 3.2 , we detail

the experimental setup for evaluating the impact of churn on block relay, and present

45

the results. In Section 3.3 , we introduce the MempoolSync protocol and report

experimental results on the efficiency of this synchronization protocol. We present a

discussion on and limitations of our work in Section 3.4 . Finally, Section 3.5

summarizes the main őndings in this chapter.

3.1 Churn characterization

Nodes on the Bitcoin network may leave and rejoin the network independently. As a

result, characterizing churn requires observation of the node activity on the network.

In this section, we őrst detail our methodology to obtain and process data on churn,

and then we present our statistical analyses. In Section 3.2 , we leverage this

characterization to run experiments on the compact block protocol with churning

nodes.

3.1.1 Obtaining and processing data

The site Bitnodes [179] continuously crawls the Bitcoin network and provides a list

of all reachable nodes with an approximately 5-minute resolution. Each network

snapshot is available for roughly 60 days [180], and the website provides a rich API

interface that can be used to download each snapshot as a JavaScript Object Notation

(JSON) őle containing the IP address, version of Bitcoin running, geographic location

etc., of the nodes on the network that are up. Listing 3.1 shows an example of a

JSON snapshot taken by the crawler at the UNIX timestamp 1526742217.

Our analysis was based on all available JSON őles from Saturday, May 19, 2018

11:03:37 AM EST (UNIX timestamp: 1526742217) to Tuesday, July 17, 2018 04:06:14

PM EST (UNIX timestamp: 1531857974) including a total of 14,674 snapshots or-

dered according to unique UNIX timestamps.

We parsed each JSON őle and generated a dataset of all IP addresses that appear

at any point on the Bitcoin network during the aforementioned time period, totaling

46

1 "220.75.229.130:3927": [

2 70015, Protocol Version

3 "/Satoshi :0.13.2/", User Agent

4 1526337217 , Connected Since

5 13, Services

6 165277 , Height

7 "220.75.229.130", Hostname

8 "Seoul", City

9 "KR", Country Code

10 37.5985 , Latitude

11 126.9783 , Longitude

12 "Asia/Seoul", Timezone

13 "AS4766", ASN

14 "Korea Telecom" Organization Name

15]

Listing 3.1: Part of a JSON őle transmitted to a Bitcoin node.

4.77×104 distinct IP addresses. We őnd that out of these IP addresses, 4.65×104 (>

97.5%) announce that they have the NODE_NETWORK [181, 182] service enabled, i.e.,

they are able to provide a copy of the full blockchain. Out of the about 2% remaining

nodes, a large fraction (> 60%) is running in pruned mode, i.e., they are able to

provide at least the last 288 blocks. Therefore, it is evident that almost all nodes in

our data set are comprised of full nodes that partake in dissemination of information

in the Bitcoin network.

Given the list of IP addresses, we then ran a script that looks for each IP address

through each consecutive network snapshot. If an IP address was found in two consec-

utive network snapshots, we concluded that the IP address was up, and thus online,

for 10 minutes (recall Bitnodes’ 5-minute resolution). Similarly, if the IP address was

found in only one of the two consecutive network snapshots, we inferred that the node

either left or rejoined the network. Finally, if IP addresses that were not found in

any of the two consecutive network snapshots were designated as down (i.e., offline)

for 10 minutes. This allowed us to record the networked behavior of a node, i.e., the

duration of time it is on and off the Bitcoin network over the 1.47× 104 snapshots.

47

May 19, 2018
11:03:37

July 17, 2018
04:06:14

8500

9000

9500

10000

S
iz
e
o
f
n
e
tw

o
r
k

Figure 3·1: Size of Bitcoin network over the measurement period.

3.1.2 Churn rate

Out of 4.77×104 distinct IP addresses observed on the network during the aforemen-

tioned time period, only 1.15 × 103 (i.e., 2.42% of the nodes) appeared to be online

at all times. Nodes corresponding to the remaining IP addresses contributed to churn

in the Bitcoin network.

Prior work [99,183] showed that the overall size of peer-to-peer networks (i.e., the

total number of peers) stays relatively stable over time. Indeed, Figure 3·1 depicts

the number of reachable nodes in the Bitcoin network extracted from successive snap-

shots, where, on average, there are 9,881 reachable nodes with a standard deviation

of 186. The low deviation, in addition to visual inspection of Figure 3·1 , suggests

that the size of the Bitcoin network is indeed stable over the measurement period.

Next, we evaluated the churn rate, namely the rate at which nodes oscillate be-

tween up and down sessions. More precisely, the churn rate can be deőned as R = 1/T ,

where T is a random variable corresponding to the sum of the duration of an up

session and its subsequent down session. Figure 3·2 shows the complementary cu-

mulative distribution function (CCDF) of the churn rate R as measured across all

the observed Bitcoin nodes. Note that R exceeds one churn per node per day, with

probability greater than 45%, and that there is a 10% probability of R ≥ 9 churns

48

10−2 10−1 100 101 102

Daily churn rate r

0.0

0.2

0.4

0.6

0.8

1.0

P
(
D
a
il
y
c
h
u
r
n
r
a
te

>
r
)

Figure 3·2: Daily churn rate on the Bitcoin network.

per node per day. The average churn rate per node is R̄ = 4.16 per day.

We point out that the nodes that are always up do not contribute to churn in the

Bitcoin network. For this reason, we őltered out data related to these nodes from our

data sets on the session lengths of a node’s up and down time on the network. In

addition, we őltered out the őrst and the last session (whether up or down) of each

node, because we did not know how long a node was up or down before we started

and after we őnished our measurement.

3.1.3 Statistical fitting of session lengths

Prior work [184ś187] showed that session lengths in various peer-to-peer protocols

exhibit a behavior similar to a heavy-tailed distribution. Therefore, in our statistical

őtting, we focus on őtting heavy-tailed distributions to the data, speciőcally: the

generalized Pareto distribution, the log-normal distribution, the Weibull distribution

[188] and the log-logistic distribution. Nolan [189] shows that maximum likelihood

estimation (MLE) of heavy-tailed distribution parameters is feasible. Hence, we use

MATLAB’s distribution őtting capabilities [190] to őt distributions based on the

MLE criterion. Finally, we also consider the exponential distribution, as a basis for

49

comparison.

Up sessions. We őrst őt a distribution to the data representing up session lengths.

Our őtting applies to the őrst 25,000 minutes, which roughly translates to 2.5 weeks.

We used the following criteria to determine the goodness-of-őt of the various distri-

butions to the actual data:

1. The R-squared value given by

R2 = 1−

∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − ȳ)

,

where y is the actual value, ŷ is the calculated value, and ȳ is the mean of

y [191]. An R2 = 1 suggests a perfect model [192].

2. The root mean squared error (RMSE) given by

RMSE =

√

√

√

√

1

n

n
∑

i=1

(ŷi − yi)
2,

where y is the actual value and ŷ is the calculated value. [191] An RMSE = 0

indicates that all of the calculated values lie on the line formed by the actual

values [193].

3. Visual inspection of the data.

We set the parameter values generated by MATLAB as a base and performed an

exhaustive search within ±10% of the base parameters. The őnal results for each

distribution are the highest R2 and lowest RMSE in that range.

The results can be seen in Figure 3·3 , and the R2 and RMSE scores for the őts

are detailed in Table 3.1 . A key observation is that the exponential distribution is

a very poor őt for the session lengths. While the log-normal distribution performs

50

5m10m 1h 5h 1d 1w 2w

Session length

0

20

40

60

80

100

C
D

F
 (

%
) Data

Weibull

LogNormal

LogLogistic

Generalized Pareto

Figure 3·3: Distribution őts for łup sessionž lengths.

Distribution R2 RMSE
Weibull 0.9002 2.60e−03

Log-normal 0.9939 1.29e−06
Log-logistic 0.9907 1.80e−03

Generalized
Pareto

0.9856 2.20e−03

Exponential 0.4904 21.70e−03

Table 3.1: R2 and RMSE scores of distribution őts for łup sessionž
lengths.

the best in terms of R2 and RMSE scores, Figure 3·3 indicates that the log-logistic

distribution őts best the cumulative distribution function (CDF) of the empirical data,

at least in the initial portion where most of the data lies. Therefore, judging from

the combination of Figure 3·3 and Table 3.1 , we conclude that the log-logistic

distribution, given by

F(α,β) (x) =
1

1 + (x/α)−β
, (3.1)

51

5m 10m 1h 5h 1d

Session length

60

70

80

90

95

C
D

F
 (

%
)

Data

Weibull

LogNormal

LogLogistic

Generalized Pareto

Figure 3·4: Distribution őts for łdown sessionž lengths.

where α > 0 is the scale parameter, and β > 0 is the shape parameter, is the

best őt for the up sessions. The parameters for the log-logistic distribution őt in

Figure 3·3 are α = 11.000 and β = 0.771.

Down sessions. Next, we őt distributions to the data representing down session

lengths. We employed an approach similar to that in the previous section. We

focused on performing a statistical őtting for sessions that are down for up to one

day (representing over 93% of the cases). Note that the mempool of a node that is

continuously off the network for a duration exceeding one day will largely be out of

synchronization with the rest of the network.

The őtting results are shown in Figure 3·4 . The corresponding R2 and RMSE

scores are listed in Table 3.2 . Notice that the exponential distribution is a very poor

őt and is never able to achieve an R2 value above 0. Observing the combination of

Figure 3·4 and Table 3.2 , we conclude that in this case the Weibull distribution,

52

Distribution R2 RMSE
Weibull 0.9777 3.28e−04

Log-normal 0.9694 5.36e−04
Log-logistic 0.9575 7.72e−04

Generalized
Pareto

0.9429 9.55e−04

Exponential 0 1

Table 3.2: R2 and RMSE scores of distribution őts for łdown sessionž
lengths.

given by

F(λ,k) (x) =

1− e−(x/λ)k x ≥ 0

0 x < 0,

(3.2)

where λ > 0 is the scale parameter, and k > 0 is the shape parameter, is the

best őt for the down sessions. The parameters for the Weibull distribution őt in

Figure 3·4 are λ = 0.640 and k = 0.183.

Table 3.1 and Table 3.2 show that the exponential distribution is not a suit-

able őt for either the up session lengths or the down session lengths. This suggests that

on an aggregate level, Markov process may not be suitable for performing analysis

on churn in the Bitcoin network. Instead, we believe that churn should be analyzed

using alternating renewal processes with heavy-tailed session lengths [194].

3.1.4 Subnet analysis

In this section, we investigate churn behavior at the level of IP subnetworks (subnets).

Our dataset contains 3.96×104 IPv4 nodes and 7.51×103 IPv6 nodes; a tiny fraction

of the remaining nodes uses onion routing [195]. We őrst focus our analysis on IPv4

/24 subnets, identifying 29,036 such subnets over 99% of which contain fewer than 10

Bitcoin nodes (i.e., with unique IP addresses). The average number of Bitcoin nodes

53

1 2 3 4 5 6 7 8 9 10

Subnet

0

50

100

150

#
o
f
n
o
d
e
s
p
e
r
su

b
n
e
t 173

162

147
136 136

115 114
107

87
78

...

Figure 3·5: Largest IPv4 /24 subnets sorted in descending order.

May 19, 2018
11:03:37

July 17, 2018
04:06:14

0

20

40

60

80

#
o
f
r
e
a
c
h
a
b
le

n
o
d
e
s

Figure 3·6: Number of reachable nodes in the largest IPv4 /24 subnet
in consecutive Bitcoin network snapshots.

per subnet is 1.36. Figure 3·5 shows statistics for the 10 largest subnets, falling

quickly from a maximum of 173 nodes to below 100.

Figure 3·6 depicts the evolution of the number of reachable nodes over time

in the largest subnet. A prominent pattern emerges: all the nodes in the subnet

are periodically unreachable for roughly the same time duration. Another interesting

insight is that the 173 nodes recorded in this subnet do not appear on the Bitcoin

network at the same time. In fact, at most 81 unique nodes are reachable at the same

time. We observe similar behavior in the next nine largest subnets.

We next study the duty cycle, deőned as the fraction of time during which a node

54

is reachable on the Bitcoin network. Figure 3·7 shows the CDF of the duty cycle

of nodes belonging to the largest subnet. The highest duty cycle of a node in this

subnet is 0.25. On average, a node in this subnet has a duty cycle of 0.07 with a

standard deviation of 0.04. Figure 3·8 shows the CDF of the duty cycle in the next

nine largest subnets, which is very similar to that shown in Figure 3·7 .

The similarity between Figure 3·7 and Figure 3·8 raises an important ques-

tion: is churn behavior in the 10 largest subnets correlated? We consider the 10 largest

subnets and compute the correlation of churn for nodes within the same subnet and

in different subnets. We use the Pearson correlation coefficient [196] to measure cor-

relation between the presence of nodes on the Bitcoin network. Given two data sets

D1, D2, the Pearson correlation coefficient, ρ, where −1 ≤ ρ ≤ 1, is given by

ρD1,D2
=

cov (D1, D2)

σ (D1) σ (D2)
,

where cov (D1, D2) represents the covariance between the two data sets, D1 and D2,

σ (D1) represents the standard deviation of the data set D1, and σ (D2) represents

the standard deviation of the data set D2 [197]. Figure 3·9 shows the results in the

form of a correlation matrix. While the behavior of nodes within the same subnet

may show correlation with one another, the behavior of nodes across subnets is largely

uncorrelated. This őnding indicates that across the 10 largest IPv4 /24 subnets nodes

independently contribute to churn in the Bitcoin network.

3.1.5 Geographic analyses

Figure 3·10 shows the geographical locations (based on data obtained from Bitn-

odes) of the 47,702 individual nodes discovered in the Bitcoin network during the time

period mentioned in Section 3.1.1 . Nodes that are always up during this time pe-

riod are marked white to make them distinguishable from the remaining nodes that

55

0.00 0.05 0.10 0.15 0.20 0.25

Duty cycle d

0.0

0.2

0.4

0.6

0.8

1.0

P
(
D
u
ty

c
y
c
le

≤
d
)

Figure 3·7: CDF of duty cycle of nodes in the largest IPv4 /24 subnet.
The duty cycle of a node represents the fraction of a time it is reachable
during the measurement period.

0.00 0.05 0.10 0.15 0.20 0.25

Duty cycle d

0.0

0.2

0.4

0.6

0.8

1.0

P
(
D
u
ty

c
y
c
le

≤
d
)

Figure 3·8: CDF of duty cycle of nodes in the 2nd to 10th largest IPv4
/24 subnets.

contribute to churn in the network. We observe that the majority of the Bitcoin

nodes are located in the North America and Europe. South America, North Asia,

the Far East and Oceania show a moderate presence while Africa and Central and

South Asia show a very little presence of Bitcoin nodes. We note that the nodes that

are always connected are not co-located in one region but rather spread out over the

entire world map.

Our geographic distribution is summarized in Table 3.3 , which shows that the

North American and European continents have the highest percentage of nodes that

56

1 2 3 4 5 6 7 8 9 10

Top 10 subnets

1

2

3

4

5

6

7

8

9

10

T
o
p

1
0
su

b
n
e
ts

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3·9: Correlation matrix showing the correlation between churn
behavior of nodes in the 10 largest /24 IPv4 subnets. The red line
delimiters separate between different subnets.

Continent Percentage
Africa 0.051
Asia 1.138

Europe 3.239
Oceania 0.692

North America 3.414
South America 0.289

Table 3.3: Percentage of continuously connected nodes in each conti-
nent.

are always up. On the other hand, Africa has a very small percentage of nodes that

are always up. These results may be related to the intermittent nature of Internet

access in parts of that continent.

57

Figure 3·10: Geographic location of individual nodes on the Bitcoin
network. Nodes that are always up are marked white. Remaining
(black) nodes contribute to churn in the network.

3.2 Experimental analysis of compact block performance with

churn

In this section, we evaluate the performance of block relay, and especially the com-

pact block relay protocol, in the presence of churning nodes, to realistically reŕect the

behavior of the Bitcoin P2P network. The section details the mechanism that we de-

veloped to log events on the Bitcoin network, the experimental setup, the method for

emulating churning nodes based on the distribution őts performed in Section 3.1.3 ,

and őnally, the results obtained.

3.2.1 Data collection mechanism

To aid in understanding Bitcoin Core’s behavior, we have developed a new log-

to-őle system that produces human-friendly, easy-to-read text őles. This logging

system is open-source and we have made it available to the research community

58

1000

100

10

1

0.1

0.1

1

10

100

1000

M
in
u
te
s

Churning node, X1 Churning node, X2

1000

100

10

1

0.1

0.1

1

10

100

1000

M
in
u
te
s

Churning node, X3 Churning node, X4

Lengths of down sessions Lengths of up sessions

Figure 3·11: Sampled up and down session lengths.

([121]/src/logFile.*). This new logging mechanism allows one to isolate speciőc

behaviors through select calls anywhere within the Bitcoin Core’s source code, most

notably information about different protocols such as the compact block. The logging

system writes core data to a log őle, and also can record various events and the in-

formation associated with those events. For instance, when a compact block arrives,

the system logs this event and saves the transaction hashes included in the compact

block in a separate őle with a unique identiőer tying it to a log entry. We have used

this system as our primary data collection mechanism for all of our experiments. We

explain the system in more detail in Appendix A along with examples of usage

and the corresponding logs generated.

3.2.2 Experimental setup

The aim of the experiment is to determine the efficiency of the compact block protocol

in the presence of churn. We achieve this by running eight nodes in the Bitcoin

network. The nodes are Dell Inspiron 3670 desktops, each equipped with an 8th

59

Generation Intel® Core i5−8400 processor (9 MB cache, up to 4.0 GHz), 1 TB

HDD and 12 GB RAM. The nodes are each running the Linux Ubuntu 18.04.1 LTS

distribution.

We ran experiments over a period of two weeks. Four nodes (denoted by X1,

X2, X3, X4) used sampled session lengths to emulate churn on the network. Speciő-

cally, we generated samples of the best őt distributions given by Equations (3.1)

and (3.2) , such that the aggregate sum of the up and down sessions is at least two

weeks for each node. We limited both the up and down session lengths from a mini-

mum of 1 second to a maximum of 1 day making sure that the mean of these session

lengths is within 1% of the mean of the original session lengths used to characterize

churn. The remaining four nodes (denoted by C1, C2, C3, C4) acted as control nodes

that are continuously connected to the network. Figure 3·11 shows the sampled up

and down session lengths for each churning node used in the experiments. It is clear

from the őgure that each churning node emulates up and down sessions independent

from other churning nodes. In order to avoid any bias, we used the Bitcoin RPC API

setban [198, 199] to ensure that the eight nodes are not connected to each other as

peers in the Bitcoin network. This way, our nodes did not directly inŕuence each

other. Our experiment started on Wednesday, May 27, 2020 12:00:00 EST and ran

without interruption for two weeks. We have made all experimental logs publicly

available on GitHub [122].

3.2.3 Statistics on compact blocks

We compare the number of compact blocks that the churning nodes (denoted by

X1, X2, X3, X4) and the (stable) control nodes (denoted by C1, C2, C3, C4) fail to

reconstruct. Table 3.4 shows the results. The churning nodes are unable to re-

construct a larger fraction of compact blocks that they received as compared to the

control nodes. Indeed, of the blocks they receive, the control nodes are able to recon-

60

Nodes Blocks
Received

Successful
Compact Blocks

(%)

Unsuccessful
Compact Blocks

(%)

C1 1726 93.97 6.03
C2 1453 91.53 8.47
C3 1751 91.55 8.45
C4 1899 94.05 5.95
X1 1299 66.20 33.80
X2 1278 73.08 26.92
X3 1279 62.16 37.84
X4 1198 66.03 33.97

Table 3.4: Block reception statistics for control nodes C1, C2, C3, and
C4, and churning nodes X1, X2, X3 and X4.

struct successfully on average 1.59×103 blocks out of 1.71×103 blocks (i.e., 92.85% of

the blocks), while the churning nodes are able to reconstruct successfully on average

only 8.45×102 blocks out of 1.26×103 blocks (i.e., 66.88% of the blocks). The results

are quite consistent across both the control and churning nodes.

3.2.4 Statistics on missing transactions

Churning nodes are generally missing far more transactions in blocks they are unable

to reconstruct than the control nodes. We identify transactions missing from blocks

by recording the requests for missing transactions that a node makes, upon receiving

a new block. This is done using the log-to-őle system described earlier (cf. Section

IV-A).

We őnd that on average a churning node misses 78.08 transactions from a block

with a standard deviation of 288.04 transactions, whereas a control node misses on av-

erage 0.87 transactions with a standard deviation of 10.78 transactions. Figure 3·12

shows the CCDF of the number of missing transactions. From the őgure, we observe

that churning nodes may be missing up to thousands of transactions from a block they

receive, while control nodes may miss at most a few hundred transactions. Roughly

61

0 100 101 102 103

Number of missing transactions n

0.0

0.1

0.2

0.3

P
(
#

m
is
si
n
g
tr
a
n
s
>

n
)

Churning nodes, Xi

Control nodes, Ci

Figure 3·12: CCDF of number of missing transactions in churning
and control nodes.

11% of blocks received by churning nodes miss more than 100 transactions up to as

many as 2,722 missing transactions in a block. On the other hand, only about 0.3% of

blocks received by control nodes miss more than 100 transactions up to a maximum

of only 307 missing transactions in a block. Therefore, our results clearly indicate

that churning nodes need to request a high number of transactions from their peers

to successfully reconstruct a block.

3.2.5 Statistics on propagation delay

Next, we investigate whether and how transactions missing in a block delay the block’s

propagation. We measure propagation delay as the difference between the time at

which a measurement node receives an announcement of a block, i.e., an inv message

with the hash of the block, from one of its peers and the time at which the node is

able to successfully collect all missing transactions that are included in the block.

We compare the propagation delay of blocks received by churning nodes with the

propagation delay of blocks received by control nodes. Blocks received by the control

nodes experience an average propagation delay of 109.31 ms with a standard deviation

62

100 101 102 103 104 105

Propagation delay t (ms)

0.0

0.2

0.4

0.6

0.8

1.0

P
(
D
e
la
y
>

t
)

Control node, C1

Control node, C2

Control node, C3

Control node, C4

Churning node, X1

Churning node, X2

Churning node, X3

Churning node, X4

Figure 3·13: Propagation delay across all blocks for both churning
and control nodes.

of 1,066.15 ms. Blocks received by the churning nodes, on the other hand, experience

an average propagation delay of 566.89 ms with a standard deviation of 3,524.78 ms.

Figure 3·13 shows the CCDF of propagation delays of blocks received by all

nodes. From the őgure, we observe that blocks received by control nodes rarely have

large propagation delays. On an aggregate level, only about 7% of blocks received by

control nodes have a propagation delay larger than 100 ms with a maximum block

propagation delay of 46.14 s. By comparison, on an aggregate level, roughly 30% of

blocks received by churning nodes experience a propagation delay larger than 100 ms

with a maximum propagation delay 105.54 s, more than twice that of any block

received by control nodes.

3.3 MempoolSync

The experimental results from Section 3.2 make it clear that missing transactions

add signiőcant delay to the propagation of blocks. This problem is especially acute for

churning nodes since their mempools often miss transactions. To address this issue,

we propose, implement and evaluate a new protocol to keep the mempools of churning

63

nodes synchronized with the rest of the network. We call this protocol MempoolSync.

The main goal of MempoolSync is to reduce the number of missing transactions in

mempools and, consequently, the propagation delay of blocks. Note that MempoolSync

does not attempt to minimize communication complexity, a well-known problem in

the distributed computing literature [156, 158, 200] whose implementation we leave

for future work. Rather, our implementation of MempoolSync into the Bitcoin Core

demonstrates the key beneőts of synchronizing the mempools of churning nodes with

the rest of the network.

3.3.1 Design of MempoolSync

MempoolSync is designed to periodically synchronize the mempool of a churning node

(receiver) with the mempool of a non-churning node (sender). Figure 3·14 shows

an overview of the synchronization protocol. The protocol leverages Bitcoin’s existing

functionality to package and send inventory (inv) messages, as well as request and

propagate transactions. The sender selects transaction hashes from its mempool and

packages them in a message (inv). The sender then sends the message to the receiver

who, upon receiving the message, computes which of the hashes in the message are

not present in its mempool. The receiver then requests the respective transactions

from the sender (getdata), who in turn responds with the requested transactions

(tx). Note that MempoolSync, does not require additional steps to ensure a receiving

node actually receives all transactions that it requested. Instead, the protocol relies

on the default Bitcoin behavior to send transactions. The sender then waits for a

conőgurable amount of time before repeating the process.

MempoolSync is a one-way synchronization protocol, i.e., the sender has no prior

knowledge of the state of the receiver’s mempool. Hence, an important question

arises here: which transaction hashes should the sender select in each synchroniza-

tion round? Our solution is based on the reference implementation of the algorithm

64

1

Sender Receiver

start ping
pong

select
transaction
hashes to

sync inv
inv\mempoolgetdata

tx
wait ping

pong
select

transaction
hashes to

sync inv
inv\mempoolgetdata

tx
wait ping

pong
select

transaction
hashes to

sync inv

Figure 3·14: Exchange of messages between the non-churning node
(sender) and the churning node (receiver) in the MempoolSync protocol.

for miners [201] in the Bitcoin Core. This reference suggests that miners should pri-

oritize transactions based on their ancestor_score [202]. The ancestor_score is

an internal Bitcoin scoring mechanism that ranks a transaction according to the total

65

start
set N to be the number of

transaction hashes sent in the
current round

let M represent the set of sorted
transactions in the sender’s

mempool based on the
ancestor_score

set n = 1,m = 1

is n ≤ N
and
m ≤
|M |?

let t represent
the mth

transaction hash
in M

has t
already

been sent?

add t to inv n = n+ 1 m = m+ 1

is |inv| > 0?

send inv

stop

yes

no

no

yes

yes

no

Figure 3·15: Procedure for selecting transaction hashes to be included
in the inv message in each round.

unconőrmed transaction fees in its ancestor tree. The sender in the MempoolSync

protocol mimics this prioritization and likewise selects transaction hashes based on

66

the respective transactions’ ancestor_score. Indeed, one can expect that these

transactions are the most likely to be included in upcoming blocks.

Figure 3·15 shows a general overview of how transaction hashes are selected and

inserted in an inv message in each round of MempoolSync. For the sake of efficiency,

the protocol ensures that the sender does not send the same transaction hash more

than once. Indeed, the sender keeps track of the hashes it has previously sent, and

omits re-sending them again in future rounds. The sender achieves this by storing

hashes of transactions already sent to a peer in a C++ std::map [203] data structure.

Hashes that are no longer in the mempool of the sender are periodically removed from

the data structure to avoid memory overhead.

We next detail how the sender smartly decides the number of transaction hashes

to include in an MempoolSync inv message. Denote by N the number of transactions

that are packaged into the MempoolSync inv message. Next, denote the number

of transactions in the sender’s mempool by NumTXsMP, and the default number of

transaction hashes to be sent in a single MempoolSync inv message by DefTXtoSync.

Let Y represent a fraction of the mempool size (i.e., a number between between 0 and

1).

By default, MempoolSync inv message should contain DefTXtoSync transaction

hashes. That is,

N = DefTXtoSync.

However, the sender must take care of a couple of edge cases:

1. It is possible that the number of transactions in the sender’s mempool far ex-

ceeds the default number of transaction hashes that the inv message should

contain, i.e., NumTXsMP ≫ DefTXtoSync. When this happens, it makes sense to

synchronize a larger fraction Y of transactions hashes from the sender’s mem-

67

pool. That is,

N = max (DefTXtoSync, Y× NumTXsMP) .

2. Similarly, it is possible that the sender does not have enough transactions in its

mempool, i.e., NumTXsMP < DefTXtoSync. This could happen when the sender

has just joined the network, or it has just received a new block which causes

removal of transactions from its mempool. When this happens, the sender

synchronizes its entire mempool with the churning node. That is,

N = min (DefTXtoSync, NumTXsMP) .

Ignoring this edge case would cause exceptions when running the Bitcoin soft-

ware if the node tries to retrieve more transactions than available in the mem-

pool.

We next provide a simple example to illustrate how transactions are chosen to

be sent in a MempoolSync message. In this example, there are ten transactions in

the sender’s mempool, i.e., NumTXsMP = 10. The protocol has smartly chosen the

number of transactions to be included in the MempoolSync message to be őve, i.e.,

N = 5. Table 3.5(a) shows the hashes of transactions in the mempool of the sender

along with their ancestor_score before they are sorted. Table 3.5(b) shows the

same hashes sorted according to their ancestor_score in a descending order. The

sender now has to pick őve hashes from this sorted list of hashes. However, it also has

to make sure it does not re-send any hashes that have already been sent to the receiver

as shown in Table 3.5(c) . It can be seen that some of these hashes are in the top

őve positions in the sorted list of hashes. Therefore, while picking őve transaction

hashes from this list, the sender skips over any hashes that it őnds in Table 3.5(c) ,

resulting in a list of hashes as shown in Table 3.5(d) . These hashes are packed into

68

a MempoolSync message and sent to the receiver.

We have added an implementation of the MempoolSync protocol to a fork of the

Bitcoin Core software as a proof-of-concept [121]. To make sure that the protocol does

not interfere with, or worse, stall the main thread in the software, our implementation

spawns a new thread when a Bitcoin client is started up. All operations related to

the protocol strictly take place within this new thread.

Our implementation of the MempoolSync protocol relies on a connection manager

maintained by each node. The connection manager, among other attributes, contains

a list of addresses of peers to which the node is connected. In the MempoolSync pro-

tocol, all participating nodes are identiőed by their IP addresses. A node acting as

sender transmits MempoolSync inv messages to peers listed in the connection man-

ager. By default, when a peer disconnects from a Bitcoin node, the former remains

in the latter’s connection manager for up to 20 minutes even after it has discon-

nected [204]. Note that a sender always pings a receiver before sending to it the

MempoolSync inv message containing transaction hashes. This way, the sender will

not send inv messages to nodes that are down or unreachable.

3.3.2 Experimental evaluation of MempoolSync in the presence of churn

We performed an empirical evaluation of the MempoolSync protocol in the presence

of churn. In this section, we describe our experimental setup and then present the

results in the following sections.

We ran this experiment in parallel with the experiment in Section 3.2.2 by

adding four additional nodes (denoted by M1,M2,M3,M4) with similar hardware

capabilities to the experimental setup. Nodes Mi, where i ∈ {1, 2, 3, 4}, emulated

churn with up and down session lengths independently sampled from the distributions

obtained in Section 3.1.3 for each node. Figure 3·16 illustrates the sampled

session lengths. In addition, these nodes were also conőgured to accept MempoolSync

69

TX hash Ancestor
Score

69dc6c 586
9d9816 34
ea844d 440
fa8082 495
a31fa4 592
824da7 16
4c09b6 212
d5a820 474
28d3b6 833
fa8ffc 504

(a)

TX hash Ancestor
Score

28d3b6 833
a31fa4 592
69dc6c 586
fa8ffc 504
fa8082 495
d5a820 474
ea844d 440
4c09b6 212
9d9816 34
824da7 16

(b)

TX hashes
69dc6c d5a820 4c09b6

(c)

TX hashes
28d3b6 a31fa4 fa8ffc fa8082 ea844d

(d)

Table 3.5: An illustration of (a) unsorted transactions in the mem-
pool with their ancestor scores (in satoshis), (b) sorted transactions
in the mempool with their ancestor scores (in satoshis), (c) hashes of
transactions already sent to a peer, and (d) transaction hashes sent in
MempoolSync message when N = 5.

messages. Note that nodes can be conőgured as either senders or receivers in the Mem-

poolSync protocol by setting the appropriate preprocessor macros to 1 as documented

in the őle src/logFile.h available in our GitHub repository [121].

The control nodes Ci from Section 3.2.2 acted as the sending nodes in the

MempoolSync protocol. Each churning node Mi was connected to a different sending

node Ci. A preliminary measurement shows that a waiting time of 30 seconds in the

MempoolSync protocol produces the best results. Therefore, we conőgured all sending

nodes Ci to send a MempoolSync message after every 30 seconds. The parameter Y

(which controls the size of the MempoolSync message as a fraction of the mempool

size in each control node) was set to 0.1 and the parameter DefTXtoSync (which

controls the default number of transactions sent in a single inv message) was set to

1,000. We found from a test measurement that some of the transactions sent as part

70

1000

100

10

1

0.1

0.1

1

10

100

1000

M
in
u
te
s

Churning node, M1 Churning node, M2

1000

100

10

1

0.1

0.1

1

10

100

1000

M
in
u
te
s

Churning node, M3 Churning node, M4

Lengths of down sessions Lengths of up sessions

Figure 3·16: Sampled up and down session lengths.

of the MempoolSync protocol may end up as orphan. To make sure that MempoolSync

does not cause unnecessary eviction of transactions already in the orphan pool, we

increased the orphan pool size to 1,000 transactions. Prior work [39] shows that the

chances of orphan transactions getting evicted with an orphan pool of this size are

quite low.

To avoid biases, none of the nodes connected to one another as peers in the Bit-

coin network (except obviously for the pairs (Ci,Mi)). The experiments ran without

interruption from Wednesday, May 27, 2020 12:00:00 EST for two weeks. To avoid

sending unnecessary traffic to other peers in the Bitcoin network, we made sure that

each node Ci only sends MempoolSync inv messages to node Mi. We have made all

experimental logs publicly available on GitHub [122].

Note that the statistics for the sending nodes are the same as nodes Ci in Sec-

tion 3.2 . Similarly, statistics for churning nodes that do not accept MempoolSync

are the same as nodes Xi in Section 3.2 . Therefore, in the following sections, we

only compare the statistics between churning nodes that accept MempoolSync mes-

71

Nodes Blocks
Received

Successful
Compact Blocks

(%)

Unsuccessful
Compact Blocks

(%)

M1 1142 80.82 19.18
M2 1184 84.54 15.46
M3 1247 80.91 19.09
M4 1270 86.30 13.70
X1 1299 66.20 33.80
X2 1278 73.08 26.92
X3 1279 62.16 37.84
X4 1198 66.03 33.97

Table 3.6: Block reception statistics for churning nodes M1, M2, M3,
and M4 that accept MempoolSync messages, and churning nodes X1,
X2, X3, and X4 that do not accept such messages.

sages, i.e., nodes Mi, and churning nodes that do not accept MempoolSync messages,

i.e., nodes Xi.

3.3.3 Statistics on compact blocks

Table 3.6 compares the percentage of successful compact blocks between the churn-

ing nodes Mi and Xi. The data in the table shows that churning nodes that accept

MempoolSync messages always reconstruct a larger proportion of compact blocks that

they received as compared to churning nodes that do not accept MempoolSync mes-

sages. The churning nodes Xi that do not implement MempoolSync successfully re-

construct, on average, only 66.88% of the compact blocks that they receive. By

comparison, churning nodes Mi, that do implement MempoolSync successfully recon-

struct, on average, more compact blocks i.e., 83.19%. This őnding indicates that

MempoolSync leads to signiőcant performance improvement.

3.3.4 Statistics on missing transactions

We next compare the number of transactions missing from compact blocks received

by the churning nodes Mi and Xi. Figure 3·17 shows the results obtained from the

72

0 100 101 102 103

Number of missing transactions n

0.0

0.1

0.2

0.3

P
(
#

m
is
si
n
g
tr
a
n
s
>

n
)

Churning nodes without MempoolSync, Xi

Churning nodes with MempoolSync, Mi

Figure 3·17: CCDF of number of missing transactions across all blocks
for all nodes.

measurement. We őnd that churning nodes Mi that accept MempoolSync messages

miss, on average, 21.30 transactions from blocks they received, with a standard de-

viation of 155.00 transactions. Churning nodes Xi that do not accept MempoolSync

messages, on the other hand, miss, on average, 78.07 transactions from blocks they

received, with a standard deviation of 288.04 transactions. While roughly 11% of

blocks received by churning nodes Xi miss more than 100 transactions, just below

only 3% of blocks received by churning nodes Mi miss more than 100 transactions.

Similarly, a smaller fraction of blocks received by churning nodes Mi miss more than

1,000 transactions as compared to blocks received by churning nodes Xi. Thus, to a

large degree, MempoolSync successfully synchronizes the mempools of churning nodes.

This synchronization results in far fewer missing transactions in compact blocks.

3.3.5 Statistics on propagation delay

With a smaller number of transactions missing from the compact blocks, one can ex-

pect that churning nodes implementing MempoolSync will have a smaller block prop-

agation delay than churning nodes not implementing MempoolSync. Figure 3·18

73

100 101 102 103 104 105

Propagation delay t (ms)

0.0

0.2

0.4

0.6

0.8

1.0

P
(
D
e
la
y
>

t
)

Churning node with MempoolSync, M1

Churning node with MempoolSync, M2

Churning node with MempoolSync, M3

Churning node with MempoolSync, M4

Churning node without MempoolSync, X1

Churning node without MempoolSync, X2

Churning node without MempoolSync, X3

Churning node without MempoolSync, X4

Figure 3·18: CCDF of propagation delay across all blocks for all
nodes.

conőrms this intuition. Blocks received by churning nodes Mi experience, on av-

erage, a propagation delay of 249.06 ms with a standard deviation of 2,193.32 ms.

On the other hand, blocks received by churning nodes Xi experience, on average, a

propagation delay of 566.89 ms with a propagation delay of 3,524.78 ms.

On an aggregate level, roughly 80% of blocks received by churning nodes Xi have

a propagation delay larger than blocks received by churning nodes Mi. Indeed, on

an aggregate level, roughly 30% of blocks received by churning nodes Xi experience

a propagation delay larger than 100 ms with a maximum block propagation delay

of 105.54 s. Comparatively, only about 12% of blocks received by churning nodes

Mi experience a propagation delay larger than 100 ms with a maximum propagation

delay of 78.83 s.

3.4 Discussions and limitations

Characterization of churn. Our characterization of churn in the Bitcoin network

relies on the data obtained from Bitnodes which we assume to be accurate. To the

best of our knowledge, Bitnodes does not discover nodes behind NAT or őrewalls,

74

and, therefore, the characterization is limited to behavior of nodes reachable by Bitn-

odes. Furthermore, it is not known what the intentions of these reachable nodes are.

However, our data indicates that a large majority (> 97.5%) announces access to the

entire blockchain whereas more than 60% of the remaining nodes run in pruned-mode.

Therefore, it is evident that these nodes take part in disseminating blocks through the

network which can be affected when these nodes churn. Note that the Bitcoin Core

is only one implementation of the Bitcoin protocol. It is worth noting that there are

other implementations of the protocol, such as btcd [205], Bitcoin Knots [206, 207],

libbitcoin [208], bitcoinj [209], etc., that do not fork the Bitcoin blockchain [210] but

łspeakž Bitcoin and are theoretically indistinguishable from one another.

We stress that archival nodes are necessary to allow new nodes to download the

blockchain when they rejoin the network. Without such nodes, an adversary could

force a new node to download a false blockchain. In addition, without non-miner

nodes present in the network, it would become centralized in the sense that miners

would have authority over consensus of new blocks.

It may be interesting to study the effects of churn in miners (speciőcally, mining

pools) who may implement their own internal networks for faster block dissemination.

Nodes operating in these mining pools, therefore, may not be reachable by Bitnodes

and are, consequently, excluded from our characterization of churn. Churn could also

be modeled as a function of the number of connections that a node has. A node with

higher number of connections may affect more peers when it churns. However, we

note that it is not easy to measure the number of connections of a node in the Bitcoin

network without knowledge of the full network topology, which is kept intentionally

hidden. Moreover, in our experiments, we do not artiőcially modify the number

of connections of nodes from the default to avoid undesirable bias without prior

knowledge of number of connections of other nodes in the network. These may be

75

interesting follow ups to work presented in this chapter which we leave for future

work.

Sampled session lengths. The session lengths sampled for our experiments are

capped at a maximum of 1 day. However, to make sure that our results are statistically

accurate, we sampled session lengths until we obtained a set of session lengths that had

a mean within 1% of the mean of the original data set. We assume that nodes in the

Bitcoin network exhibit a homogeneous churn behavior and follow the distributions

obtained in Section 3.1.3 . Note that the session lengths are independently sampled

for all nodes in our experiment, and each node’s sampled session lengths are also

independent from one another as illustrated in Figure 3·11 and Figure 3·16 .

MempoolSync. We have implemented MempoolSync as a proof-of-concept to high-

light the beneőts of synchronizing mempools of churning nodes with highly-connected

nodes in the Bitcoin network.

In our evaluation of MempoolSync, only one receiver was connected to a sender.

We notice that with our current implementation, Bitcoin can easily handle the load

of MempoolSync on a peer-to-peer basis. However, it is evident that in case of many

churning nodes, one would need to implement a load balancing mechanism to avoid

overload and network overhead at a single sender. While a majority of nodes in the

network churn, we őnd that a large fraction of nodes does not churn as often as other

nodes as shown in Figure 3·2 . Nonetheless, there still remains a question of how

churning nodes can identify highly-connected nodes in the network in a trustless and

decentralized manner.

We speciőcally did not connect the churning nodes not conőgured with Mem-

poolSync to control nodes as opposed to connecting churning nodes conőgured with

MempoolSync to control nodes in our experiments. This is because we wanted to

76

obtain data for regular churning nodes without interfering with how they discover

and connect to peers. Connecting churning nodes not conőgured with MempoolSync

to control nodes also creates an edge between the former and churning nodes conőg-

ured with MempoolSync connected to the same control node. This may introduce

undesirable bias in our data. It is also evident that since MempoolSync is not a

two-way synchronization protocol, it may cause unnecessary network overhead if a

receiver does not churn.

Finally, note that Bitcoin is not a stationary but dynamic system and overtime

statistics will change. Hence, it is unclear whether running experiments over longer

periods would provide more statistically meaningful data. Therefore, we believe our

choice of running experiments over a period of two weeks is adequate. It should

be noted that results obtained from our experiments are quite consistent across dif-

ferent categories of nodes, i.e., control nodes, churning nodes not conőgured with

MempoolSync, and churning nodes conőgured with MempoolSync as shown in Sec-

tions 3.2 and 3.3.2 .

3.5 Summary

The main results from the work presented in this chapter are summarized below.

• We identiőed the previously unreported effects of churn on the Bitcoin network

and performed a characterization of churn by őtting statistical distributions to

the up and down session lengths.

• We emulated churn on full nodes connected to the live Bitcoin network to

empirically demonstrate the effects of churn on the performance of the compact

block relay protocol. Our experiments showed that churning nodes
(

i
)

fail to

reconstruct a larger fraction of compact blocks;
(

ii
)

miss a large number of

77

transactions from these blocks; and
(

iii
)

incur a larger delay in propagation of

blocks than control nodes.

• We proposed and implemented a novel proof-of-concept synchronization scheme,

MempoolSync, in the Bitcoin Core to mitigate the deteriorating effects of churn

on the performance of the Bitcoin protocol. We show that by periodically

synchronizing the mempool of churning nodes with those of control nodes, the

performance of the compact block relay protocol can be signiőcantly improved.

Our methodology can be extended to other blockchain systems to study the effects

of churn on their underlying block relay protocols. Nonetheless, it is evident from our

work that there is signiőcant beneőt in implementing efficient synchronization of the

mempools of blockchain nodes, thus keeping them up-to-date with transactions that

they might have missed while being disconnected.

78

Chapter 4

Empirical comparison of block relay

protocols for blockchains

Our őndings in Chapter 3 show that the performance of the compact block relay

protocol degrades when full nodes churn in the Bitcoin network. This subsequently

raises the question whether other block relay protocols suffer from the same problem

and how they compare one to another when full nodes churn in the corresponding

blockchain networks. Churn is ubiquitous and pervasive in blockchain networks [68ś

70] and may occur due to a variety of reasons, such as the need to apply software

patches or intermittency of power or network connectivity. Indeed, power outages are

common in developing countries [79ś86] and not unusual in developed countries as

well [87ś98].

To this effect, in this chapter, we analyze and quantify such real-world effects

on three popular block relay protocols used in the Bitcoin ecosystem (described in

greater detail in Section 2.2.4):
(

i
)

the legacy (default) block relay protocol,
(

ii
)

the compact block relay protocol [54], and
(

iii
)

the more recent Graphene [55, 123]

block relay protocol. Our comparisons are carried out through the popular Bitcoin

Unlimited (BU) client, which is a concrete implementation for Bitcoin Cash (a fork of

the Bitcoin blockchain ś see Section 2.2.2) that can support all three protocols after

some code changes. Unlike existing simulation-based evaluations, our experiments

include important real-world artifacts such as the ŕuctuations in node connectivity

that are ubiquitous for these networks.

79

The rest of this chapter is organized as follows. In Section 4.1 , we present

empirical evaluations and compare one to another the performance of the three afore-

mentioned block relay protocols. We take a deeper look in Section 4.2 into the

three block relay protocols and show insights relevant to the protocols. Section 4.3

summarizes the main őndings in the chapter.

4.1 Evaluation of block relay protocols

In this section, we experimentally evaluate the performance of the Graphene, com-

pact, and default block relay protocols in three network regimes:
(

i
)

always on,

which represents the ideal situation where full nodes stay continuously connected to

the BU network;
(

ii
)

statistical churn, where nodes churn according to statisti-

cal characterization derived in Section 3.1.3 ; and
(

iii
)

periodic churn, whereby

nodes follow a periodic churn pattern with őxed duration for the łonž and łoffž peri-

ods. This allows us to better isolate churn factor that affect the performance of block

relay protocols. Further, this can emulate the aforementioned disconnections due to

power outages, with nodes staying off the network over extended durations.

The rest of this section is organized as follows. We őrst detail the mechanisms

we employ to collect data from our experiments. Next, we describe our measurement

setup. Then, in the rest of this section, we present statistics on the performance of

the aforementioned block relay protocols in different network regimes.

4.1.1 Data collection mechanism

Our data collection mechanism builds upon the łlog-to-őle systemž developed in Sec-

tion 3.2.1 . We signiőcantly augment this logging system with new capabilities to

record data relevant to Graphene blocks, including capturing various events relevant

to this complex protocol, as described in Section 2.2.4 . We also add new function-

ality so that data related to compact and default blocks can be recorded with őner

80

granularity. The logging system allows one to
(

i
)

identify events when they occur;
(

ii
)

follow the changes in states as they take place; and
(

iii
)

record relevant data,

e.g., the hash of a block that is announced, the transactions in the block, etc., to őles

which one can later use to obtain results. The primary data point in our experiments

is a block and we tie every data associated with the block to its unique hash. We

do this for each Graphene, compact, and default block received by our measurement

nodes. This allows us to isolate, identify, and acquire enough information to get

necessary results. We use this logging system as our primary method of obtaining

data in our experiments. Our expansion to the logging system is made public and is

available on GitHub [124].

4.1.2 Experimental setup

The purpose of the experiments in this section is to gauge the performance of the

Graphene, compact, and default block relay protocols. For this purpose, we connect

12 nodes to the live BU network. The nodes are Dell Inspiron 3670 desktops, each

equipped with an 8th Generation Intel® Core i5−8400 processor (9 MB cache, up

to 4.0 GHz), 1 TB HDD and 12 GB RAM. The nodes are each running the Linux

Ubuntu 18.04.5 LTS (Bionic Beaver) distribution. The nodes run v1.9.0.1 of BU with

an implementation of a bug őx [211] and an implementation of the logging system

detailed in Section 4.1.1 . We have made this version of BU public which is available

on GitHub [124]. We emphasize that all of the nodes in our experimental setup are

on both the DST side of Listings 1 to 3 when they receive blocks from their peers

and on the SRC side when they relay blocks to their peers. However, any reference to

a łnodež in this chapter is when it is on DST side and relevant information is recorded.

To study the performance of block relay protocols in the always on and statis-

tical churn regimes, we run experiments and measure data over a period of two

weeks starting from Tuesday, April 20, 2021 00:00:00 EST. Six nodes always stay

81

connected to the BU network throughout the measurement period. Two of these

nodes are conőgured to accept Graphene blocks only, two to accept compact blocks

only, and the remaining two to accept neither, i.e., accept default blocks only. Ad-

ditionally, six nodes ŕuctuate on and off the BU network using session lengths sam-

pled from distributions that represent churn in the Bitcoin network [69]. Specif-

ically, the nodes stay on and off the network with session lengths sampled from

the log-logistic (see Equation (3.1) and corresponding parameter values in Sec-

tion 3.1.3) and the Weibull (see Equation (3.2) and corresponding parameter

values in Section 3.1.3) distributions, respectively. Two of these nodes accept

Graphene blocks only, two accept compact blocks only, and the remaining two only

accept default blocks.

To study the performance of block relay protocols in the periodic churn regime,

we introduce the following ŕuctuation periods: 20 minutes (m), 1 hour (h), 3 h,

and 6 h. We chose the duration of these periods based on results of preliminary

experiments: durations that are either shorter or longer do not yield results that

are markedly different from ones presented in this section in the 20 minutes and

6 hours, respectively. For each of the ŕuctuation period duration, we further divide

experiments into two cases. In the őrst experiment, which ran for one week starting

from Thursday, March 25, 2021 22:00:00 EST, we set the off duty cycle to be 25%

of the ŕuctuation period. That is, during each ŕuctuation period, the node stays off

the network 25% of the time, and on the network for 75% of the time. In the second

experiment, which ran for one week starting from Friday, April 02, 2021 02:01:19 EST,

we similarly set the off duty cycle to be 75% of the total duration of the ŕuctuation

periods. We split the 12 nodes in our testbed into four groups of three nodes. Each

group is conőgured with one of the four aforementioned ŕuctuation periods (i.e., 20 m,

1 h, 3 h, and 6 h). Within each group, one node accepts Graphene blocks, one node

82

accepts compact blocks, and the last node accepts default blocks only.

To get an in-depth view of additional transactions in cmpctblock messages, we

performed another experiment which ran for two weeks starting from Friday, Septem-

ber 3, 2021 02:00:00 EST. In this experiment, three of the 12 nodes are always on,

and the remaining nine statistically churn according to distributions presented in Sec-

tion 3.1.3 . Since this is a study on additional transactions in cmpctblock messages,

all 12 nodes are conőgured to accept compact blocks only.

Note that nodes conőgured to accept Graphene or compact blocks only must also

accept default blocks as a fail-over mechanism in case the aforementioned protocols

fail drastically. Therefore, our testbed nodes could connect to peers that are not

conőgured with the same relay protocol. In such cases, a testbed node and its peer

will relay default blocks only. To make sure that we do not introduce any bias in our

results, we do not force our nodes to drop connections with peers with whom they can

only communicate via the default block relay. Results obtained from our experiment

are detailed in the sections that follow. We have made our experimental logs publicly

available for use by the wider research community [125].

4.1.3 Statistics on the propagation delay of blocks

In this section, we present statistics on the one-hop block propagation delays in dif-

ferent network regimes. We measure propagation delay as the difference between the

time the header of a block, i.e., the headers message, is received by a measurement

node and the time at which the block is fully reconstructed and processed.

Figure 4·1 shows the complementary cumulative distribution function (CCDFs)

of block propagation delays for nodes in the always on and statistical churn

regimes conőgured with the Graphene, compact, and default block relay protocols.

In nodes in the always on regime, Graphene, compact, and default blocks have mean

propagation delays of 190.67 ms, 268.34 ms, and 974.11 ms, respectively, with stan-

83

101 102 103 104

Propagation delay d (ms)

10−3

10−2

10−1

100

P
(
D
e
la
y
>

d
)

Always on

Graphene

Compact

Default

101 102 103 104

Propagation delay d (ms)

Statistical churn

Graphene

Compact

Default

Figure 4·1: Complementary cumulative distribution functions
(CCDFs) of block propagation delays in Graphene, compact, and de-
fault block relay protocols in the always on and statistical churn

regimes. Graphene block relay protocol performs best in roughly 99%
of blocks whereas default block relay protocol always performs worst.

dard deviations of 280.32 ms, 393.27 ms, and 1392.44 ms, respectively. On the other

hand, in nodes in the statistical churn regime, Graphene, compact, and default

blocks have mean propagation delays of 259.13 ms, 364.19 ms, and 1287.22 ms, respec-

tively, with standard deviations of 649.99 ms, 718.58 ms, and 2357.11 ms, respectively.

These statistics show that
(

i
)

Graphene blocks have smaller average propagation

delays out of the three protocols whereas default blocks have the largest average prop-

agation delays across both regimes, and
(

ii
)

blocks across the three different protocols

in the statistical churn regime always have, on average, larger block propagation

delays as compared to blocks across the respective protocols in the always on regime

which is explained by nodes not receiving several transactions from their peers while

they are off the network. Upon receiving a block which may contain many of these

missing transactions, the nodes must perform round-trip communication to recover

84

Fluctuating
period

Graphene Compact Default

100
ms

1,000
ms

100
ms

1,000
ms

100
ms

1,000
ms

20 m 83.65% 10.57% 86.25% 16.57% 98.16% 69.19%
1 hr 76.56% 15.65% 84.10% 15.42% 95.88% 51.67%
3 hr 75.26% 8.85% 79.22% 8.62% 93.55% 37.67%
6 hr 75.60% 3.30% 79.03% 3.41% 93.60% 36.65%

(a)

Fluctuating
period

Graphene Compact Default

100
ms

1,000
ms

100
ms

1,000
ms

100
ms

1,000
ms

20 m 95.66% 42.02% 96.72% 49.13% 99.19% 86.54%
1 hr 75.35% 28.46% 78.96% 21.99% 97.24% 46.81%
3 hr 78.86% 16.61% 77.99% 14.92% 96.34% 48.32%
6 hr 77.52% 9.22% 76.02% 9.03% 92.04% 38.75%

(b)

Table 4.1: Fraction of blocks that have propagation delay larger than
100 ms, and 1,000 ms in Graphene, compact and default block relay
protocols over varying ŕuctuating periods with (a) 25%, and (b) 75%
off duty cycles.

the transactions (in the case of Graphene and/or compact block relay protocols)

and/or to recover from block decode failure (in the case of Graphene block relay pro-

tocol) which also results from missing transactions. The extra communication adds

to the delay in reconstructing blocks and, consequently, the delay in propagation of

these blocks.

Table 4.1 shows the fraction of blocks that have a propagation delay exceeding

100 ms and 1,000 ms across the block relay protocols in nodes in the periodic

churn regime for different ŕuctuating periods and off duty cycles. A key takeaway

from the table is that the default block relay protocol always performs worse than

both the Graphene and compact block relay protocols. This is because the default

block contains full transactions as compared to Graphene and compact blocks that

contain short hashes of a majority of transactions. Therefore, default blocks take

85

longer to propagate.

A trend that can be observed across all ŕuctuating periods is that both Graphene

and compact block relay protocols perform worse when they are off the network for

75% of the ŕuctuating periods. Similar to the case with always on and statistical

churn regimes, this can be attributed to extra round-trip communication for recov-

ering missing transactions and performing failure recovery.

Next, it is apparent that as the lengths of the ŕuctuating periods increase, the

performance of both the Graphene and compact block relay protocols improves. That

is, a smaller fraction of blocks has large propagation delays. We theorize that this is

because as the nodes stay off the network for longer, a large number of the transactions

that they miss receiving from their peers is already included in blocks that they

also miss receiving while they are off the network. Therefore, once they rejoin the

network, they miss fewer transactions and suffer from fewer failures, thereby requiring

fewer additional round-trip communications. Therefore, they experience shorter block

propagation delays.

On the other hand, we note that the Graphene block relay protocol generally

outperforms the compact block relay protocol except for a few cases, especially when

the ŕuctuating period is 1 hr and the off duty cycle is 75% of the ŕuctuating period.

This is likely because the node misses several transactions from its peers that are

going to be included in the next few blocks that it will receive. Therefore, the node

requires additional round-trip communication to recover these transactions adding to

the propagation delay of blocks.

4.1.4 Statistics on the communication size per block

Next, we look at statistics on the communication size per block received by different

types of nodes. When calculating the total communication size per block, we take

into account the serialized size of the initial block received (i.e., grblk, cmpctblock,

86

100 101 102 103

Comm. size s (kB)

10−3

10−2

10−1

100

P
(
C
o
m
m
.
si
z
e
>

s
)

Always on

Graphene

Compact

Default

100 101 102 103

Comm. size s (kB)

Statistical churn

Graphene

Compact

Default

Figure 4·2: CCDFs of block communication sizes in Graphene, com-
pact, and default block relay protocols in the always on and statis-

tical churn regimes. Graphene block relay protocol performs best in
both regimes whereas default block relay protocol performs worst.

and block for Graphene, compact and default blocks, respectively), and the serialized

sizes of all follow up round-trip messages sent and received to and from peers. These

messages could, e.g., be sent to recover missing transactions from peers or to perform

failure recovery. For detail on all possible message exchanges between nodes in BU,

please refer to Section 2.2.4 .

Figure 4·2 shows the CCDFs of block communication sizes for the nodes in the

always on and statistical churn regimes conőgured with the Graphene, compact

and default block relay protocols. In nodes in the always on regime, Graphene,

compact, and default blocks have mean communication sizes of 24.53 kB, 46.17 kB,

and 599.93 kB, respectively, with standard deviations of 183.82 kB, 218.79 kB, and

716.71 kB, respectively. On the other hand, in nodes in the statistical churn

regime, Graphene, compact, and default blocks have mean communication sizes of

40.58 kB, 73.37 kB, and 592.64 kB, respectively, with standard deviations of 234.06 kB,

87

Block relay
protocol

Comm.
size

Fluctuating period

20 m 1 hr 3hrs 6 hrs

Graphene
10 kB 57.20% 69.41% 50.82% 51.54%

100 kB 47.72% 54.45% 23.04% 13.06%
1,000 kB 23.90% 23.54% 9.04% 4.70%

Compact
10 kB 76.65% 64.40% 57.92% 51.50%

100 kB 52.29% 52.05% 26.76% 13.53%
1,000 kB 18.27% 13.93% 9.18% 5.10%

Default
10 kB 98.56% 98.50% 98.46% 99.23%

100 kB 82.71% 81.05% 81.37% 81.03%
1,000 kB 30.51% 25.98% 26.62% 28.63%

(a)

Block relay
protocol

Comm.
size

Fluctuating period

20 m 1 hr 3hrs 6 hrs

Graphene
10 kB 26.93% 29.91% 41.41% 31.74%

100 kB 11.20% 18.83% 12.46% 7.77%
1,000 kB 3.39% 11.07% 4.75% 2.13%

Compact
10 kB 63.20% 60.83% 57.26% 53.20%

100 kB 25.10% 24.46% 19.45% 9.55%
1,000 kB 5.87% 4.77% 5.53% 1.81%

Default
10 kB 98.15% 98.15% 98.09% 98.05%

100 kB 83.03% 82.46% 82.14% 81.72%
1,000 kB 31.54% 28.97% 28.57% 27.79%

(b)

Table 4.2: Fraction of blocks that have communication sizes larger
than 10 kB, 100 kB, and 1,000 kB in Graphene, compact and default
block relay protocols over varying ŕuctuating periods with (a) 25%,
and (b) 75% off duty cycles.

279.07 kB, and 701.68 kB, respectively.

Similar to Section 4.1.3 , the rise in communication sizes of blocks received by

nodes in the statistical churn regime compared to blocks received by nodes in

the always on regime can be attributed to extra round-trip communication needed

to recover missing transactions and perform failure recovery.

Table 4.2 shows the fractions of blocks that have a total communication size

larger than 10, 100, and 1,000 kBs across the block relay protocols in nodes in the

88

periodic churn regime for different ŕuctuating periods and off duty cycles. Similar

to the statistics presented in Section 4.1.3 , a key takeaway from the table is that

the default block relay protocol always performs worse than Graphene and compact

block relay protocols. That is, default blocks are always larger in size than Graphene

and compact blocks and any additional round-trip communication combined. This is

because default blocks contain full transactions each of which can be several hundred

bytes in size [212, 213]. By comparison, Graphene and compact blocks contain only

short hashes representing transactions which considerably reduce the overall size of

the blocks.

We observe more trends similar to those highlighted in the Section 4.1.3 : across

all ŕuctuating periods, both Graphene and compact block relay protocols perform

worse when their off duty cycle is 75% of the ŕuctuating period; as the length of

the ŕuctuating periods increase, the performance of the Graphene and compact block

relay protocols improves. Finally, the Graphene block relay protocol almost always

outperforms the compact block relay protocol except in a few cases where our pro-

posed theory from the previous section applies.

4.1.5 Correlation between propagation delay and communication per

block

As observed from the previous two sections, the communication and delay perfor-

mance of the various protocols follow similar trends. We next rigorously quantify

the correlation between these metrics by calculating the Spearman Rank Correlation

(SRC) coefficient ρ [214].

Provided two data sets D1 and D2 of equal size n, the SRC coefficient is given by

ρ = 1−
6
∑n

i=1 (D1i −D2i)
2

n (n2 − 1)
,

where −1 ≤ ρ ≤ +1, and D1i and D2i are the ranks of the ith data point in sets D1

89

Block relay protocol Graphene Compact Default
Correlation coefficient ρ 0.51 0.61 0.68

Table 4.3: Coefficients for Spearman Rank Correlation between the
block propagation delays and block communication sizes in Graphene,
compact, and default block relay protocols in nodes in the statistical
churn regime.

Fluctuating
period

ρ
Graphene Compact Default

25% 75% 25% 75% 25% 75%
20 m 0.69 0.76 0.68 0.78 0.67 0.50
1 hr 0.65 0.85 0.69 0.84 0.50 0.42
3 hr 0.60 0.70 0.72 0.79 0.61 0.32
6 hr 0.56 0.61 0.72 0.71 0.61 0.74

Table 4.4: Coefficients for Spearman Rank Correlation between the
block propagation delays and block communication sizes in Graphene,
compact, and default block relay protocols in nodes in the periodic

churn regime. In general, the propagation delays and communication
size are moderately to highly correlated.

and D2, respectively [215]. Values of ρ = +1 and ρ = −1 imply an exact monotonic

relation between data sets D1 and D2 where the former implies that D1 increases

as D2 increases and the latter implies the opposite [216]. The ranks in SRC are

determined as follows: the data sets are sorted in ascending order and the values are

replaced by their corresponding ranks [217].

Our results are summarized in Tables 4.3 and 4.4 . We őnd that there generally

exists moderate, i.e., ρ ∈ [0.4, 0.6), to strong relationship, i.e., ρ ∈ [0.6, 0.8) [218],

between block propagation delays and block communication sizes in all three block

propagation relay protocols. That is, as churning nodes exchange additional messages

to recover missing transactions in blocks, their propagation delay can be expected to

increase regardless of the geographical locations of neighboring peers in the Bitcoin

network.

90

4.2 Insights into block relay protocols

In this section, we present extensive analyses and insights into the three block relay

protocols. We take a deep dive into the causes of the deteriorated performance of the

Graphene block relay protocol in Section 4.2.1 . We study the events that occur

corresponding to the Graphene blocks received by the measurement nodes in a tem-

poral analysis presented in Section 4.2.2 . In Section 4.2.3 , we compare the sizes

of the őrst messages relayed in each protocol. We present an analysis of the usefulness

of the additional full transactions in the cmpctblock messages in Section 4.2.4 .

4.2.1 Graphene in depth

Our őndings in Sections 4.1.3 and 4.1.4 indicate that the performance of the

Graphene block relay protocol degrades in some cases. In this section, we take a

deeper look into the reasons that cause this degraded performance.

Recall from Section 2.2.4 that there are several scenarios in which the Graphene

protocol requires extra round-trip communication which includes recovering missing

transactions from peers and performing failure recovery when block decode fails. The

Graphene block relay protocol is complex: block decode could be successful but there

might be transactions missing from the mempool. On the other hand, block decode

could fail and there may or may not still be transactions missing from the mempool

even after failure recovery.

Block decode failure occurs when the condition in line 8 of Listing 3 returns

false. That is, the subtraction operation I − I ′ fails. When this happens, failure

recovery is performed which is depicted by lines 17 onward, i.e., scenarios ③, ④,

and ⑤, in Listing 3 .

Figure 4·3 shows the proportion of Graphene blocks that suffer from decode

failure when the off duty cycle is 25% and 75%, respectively, and for different ŕuctua-

91

Off dutycycle

0

10

20

30

40

50

60

%
b
lo
c
k
d
e
c
o
d
e
fa
il
s

6.08%

20 m

61.25%

20 m

17.82%

1 hr

11.96%

1 hr

2.79%

3 hr

2.72%

3 hr

2.26%

6 hr

0.40%

6 hr

25% 75%

Figure 4·3: Proportion of block decode failures, i.e., scenarios ③, ④,
and ⑤ in Listing 3 , over different ŕuctuation periods with 25% and
75% off duty cycles. Block decode failure rates are higher when nodes
churn more often and stay off the network longer thereby not being
able to recover. This is prominent in ŕuctuating periods of 20 m and
1 hr.

tion periods. The őgure shows that block decode failure rates are higher when nodes

churn more often and stay off the network longer. They are, hence, unable to recover

from staying off the network. As the nodes churn less frequently as well as stay on

the network longer, the block decode failure rates signiőcantly drop.

Next, we investigate the case when block decode is successful but transactions

are missing from the mempool of the node when a new block is received. This is

represented as Scenario ② in Listing 3 on lines 12-16.

Figure 4·4 shows the mean number of transactions missing from mempool when

a block is received and successfully decoded with 25% and 75% off duty cycle. The

combination of Figures 4·3 and 4·4 provide a thought-provoking insight: when

a node churns frequently, it misses receiving enough transactions that will result

92

Off dutycycle

0

250

500

750

1000

1250

1500

M
e
a
n
n
u
m

m
is
si
n
g
T
X
s

26.25

20 m
0.82

20 m

24.09

1 hr

1414.64

1 hr

271.45

3 hr

551.84

3 hr

125.88

6 hr

415.43

6 hr

25% 75%

Figure 4·4: Average number of missing transactions (with 95% conő-
dence intervals) from blocks that are decoded successfully, i.e., scenario

② in Listing 3 over different ŕuctuation periods with 25% and 75%
off duty cycles.

in a higher fraction of block decode failures and the missing transactions will be

recovered via failure recovery. On the other hand, when a node churns less frequently,

it still misses transactions which are not enough to cause block decode failure. These

transactions are then recovered by sending transaction recovery requests to peers.

Additionally, as the nodes stay on the network for longer, they miss fewer transactions.

In either cases, both failure recovery and recovering missing transactions require an

extra round-trip communication.

Finally, we take a look at the case when block decode is unsuccessful and there are

still missing transactions even after failure recovery is performed. This is represented

as scenario ④ in Listing 3 on lines 29-33. Interestingly, Figure 4·5 reveals that

when nodes ŕuctuate frequently and stay off the network longer, they may still miss

transactions after failure recovery. This requires an additional extra round-trip of

communication on top of that needed to perform failure recovery.

93

Off dutycycle

0

100

200

300

400
M

e
a
n
n
u
m

m
is
si
n
g
T
X
s

1.79

20 m

376.02

20 m

32.40

1 hr

142.39

1 hr

11.87

3 hr

34.94

3 hr

1.56

6 hr
0.00

6 hr

25% 75%

Figure 4·5: Average number of missing transactions from blocks that
are decoded successfully, i.e., scenario ④ in Listing 3 over different
ŕuctuation periods with 25% and 75% off duty cycles.

The insights presented in this section explain the cause behind degraded per-

formance of the Graphene block relay protocol in the case when nodes churn fre-

quently and stay off the network longer. In some cases, up to two extra round-trips

of communication are required resulting in higher delays in propagation and larger

communication sizes.

4.2.2 Temporal analysis of the Graphene block relay protocol

In this section, we study the prevalence of scenarios discussed in Section 2.2.4 in

Graphene blocks received by churning nodes. That is, what happens in the Graphene

block relay protocol when a churning node rejoins the network. For this purpose,

we create collections of blocks received in each interval for which the churning nodes

are connected to the Bitcoin Unlimited network. We then identify the scenarios that

each block goes through.

94

5 10

Block number

0

20

40

60

80

100
%

o
f
b
lo
c
k
s

Scenario ①

Scenario ②

Scenario ③

Scenario ④

Scenario ⑤

Figure 4·6: Percentage of blocks received in the statistical churn

regime that face the őve scenarios after the churning nodes rejoin the
network. The longer a node stays on the network, the more scenario ①
(i.e., no extra round-trip) prevails whereas the scenarios ③, ④, and

⑤ do not occur very often.

We őrst consider the statistical churn regime. Figure 4·6 shows őndings

for the őrst 10 Graphene blocks received after rejoining the network. Roughly 54%

of the Graphene blocks received by a node immediately after it rejoins the network

are successfully decoded and have no missing transactions. A signiőcant portion,

i.e., roughly 39%, of the Graphene blocks are successfully decoded but have miss-

ing transactions. This shows that nodes need to perform round-trip communication

with their peers to recover missing transactions immediately after they rejoin the

network. While there are some blocks that suffer from scenarios involving block de-

code failures, their proportion is relatively small. As the node stays connected to

the network and receives further blocks, the chances of transactions missing from the

block signiőcantly decrease. This trend continues on albeit some random off shoots

with small probability (depicted by small peaks in the őgure) in blocks with missing

95

1 5

Block number

0

20

40

60

80

100 Off duty cycle: 25%

(a)

1 5

Block number

Off duty cycle: 75%

(b)

%
o
f
b
lo
c
k
s

Scenario ① Scenario ② Scenario ③ Scenario ④ Scenario ⑤

Figure 4·7: Percentage of blocks received in the periodic churn

regime with a ŕuctuation period of 1 hr and off duty cycle of (a) 25%
and (b) 75% that face the őve scenarios after a node rejoins the net-
work. In either case, scenario ① does not represent the majority of
cases for the őrst block and scenarios ③ and ⑤ occur infrequently.

transactions.

We observe similar behavior in the periodic churn regime. For example, Fig-

ure 4·7 (a) and Figure 4·7 (b) show statistics for Graphene blocks received by

nodes with a ŕuctuating period of 1 hr and off duty cycles of 25% and 75%, respec-

tively. In both cases, when nodes rejoin the network, they see a large portion of

blocks with missing transactions regardless of whether the IBLT decoding process is

successful or not. This behavior is worse in nodes that stay off the network longer.

However, similar to the statistical churn regime, the performance of the Graphene

block relay protocol improves over time, and the proportion of blocks with missing

transactions decreases signiőcantly.

These results show that the performance of Graphene degrades when a node rejoins

the network. However, as the node stays on the network, the protocol recovers. We

96

believe this behavior motivates the necessity for a one-time mempool synchronization

between peers when a churning node rejoins the network.

4.2.3 Size of first message across block relay protocols

In this section, we investigate the size of the őrst block message for each of the relay

protocols as a function of the number of transactions included in a block. Initial

messages are important because they are transmitted regardless of the speciőc sce-

nario that ends up happening with future messages. We are speciőcally interested

in identifying trends as well as outliers. Recall from Section 2.2.4 that the őrst

messages are grblk, cmpctblock, and block for the Graphene, compact, and default

block relay protocols, respectively.

Figure 4·8 shows on the x-axis the number of transactions in a block received

by nodes and on the y-axis the size of the őrst block message in bytes, in the statis-

tical churn regime. Notice that both the x- and y-axes are plotted on a log scale.

The őgure shows that for default blocks, the block message is almost always the

largest. This is because in default blocks, the őrst message is the entire block and

contains full transactions included in the block. Hence, as the number of transactions

in the block increase, so does the size of the block message. The block message has,

on average, a size of 5.93× 105 bytes with a standard deviation of 7.02× 105 bytes.

Next we compare the sizes of grblk and cmpctblock messages. We observe that

when the number of transactions in a block is small (i.e., up to 60 transactions), the

cmpctblock message usually has a smaller size than the grblk message. Further,

there is a visibly direct relationship between the number of transactions in a compact

block and the size of the cmpctblock message in the shape of an almost straight line.

This line also forms a lower bound for the size of the cmpctblock messages, because

for every transaction in a block, the cmpctblock message contains a 6-byte hash for

the transaction. Therefore, as the number of transactions in a block increase, so does

97

the size of the cmpctblock message. Note, however, that there are instances in which

the size of the cmpctblock message deviates from the straight line.

We conjecture that this is due to the additional transactions included in the

cmpctblock message. To verify this conjecture, Figure 4·9 shows on the x-axis

the number of transactions in a block, on the left y-axis the size of the cmpctblock

messages in bytes and on the right y-axis the number of additional transactions in

cmpctblock messages. We observe a direct correlation between the number of ad-

ditional transactions in the cmpctblock message and its size. That is, when the

cmpctblock message contains only the coinbase transaction, its size follows the arith-

metic progression mentioned earlier. However, the size of the cmpctblock message

increases with the number of additional transactions it includes.

While it may appear from Figure 4·8 that cmpctblock are smaller in size than

the grblk messages, we emphasize that the former are only bounded from below by

the straight line marked by crosses in Figure 4·8 . Sizes of grblk messages, on the

other hand, appear to be bounded from above by a curve, marked by green circles,

that looks asymptotically linear. As the number of transactions in blocks increase,

the sizes of the initial grblk message tend to signiőcantly deviate from the curve. We

őnd contrary to cmpctblock messages that the sizes of grblk messages do not depend

on the number of additional transactions in the message. Upon examining software

implementation of the Graphene protocol in Bitcoin Unlimited, we őnd that grblk

messages always contain only one additional transaction: the coinbase transaction.

Therefore, we conjecture that the deviation from the curve is best explained by the

size of the mempool sent by the SRC node to the DST node (see the discussion in

Section 2.2.4). This parameter determines the sizes of the Bloom őlter and IBLT

included in the grblk message which in turn determines the overall size of the message.

We leave further examination of this conjecture to future work.

98

100 101 102 103 104

txs in block

103

104

105

106

S
iz
e
o
f
fi
r
st

b
lo
c
k
m
sg

(b
y
te
s)

Default blocks

Compact blocks

Graphene blocks

Figure 4·8: Sizes of the őrst block messages, i.e., block, cmpctblock,
and grblk, against the number of transactions in the respective com-
pact blocks. The block messages almost always have the largest sizes.

Overall, the grblk message has an average size of 1.21×104 bytes with a standard

deviation of 2.31 × 104 bytes, while the cmpctblock message has an average size of

6.24×104 bytes with a standard deviation of 2.60×105 bytes. Thus, the őrst message

in Graphene is signiőcantly smaller. Still, the cmpctblock message is much smaller

than the block message of the default protocol. The latter has an average size of

5.93× 105 bytes with a standard deviation of 7.02× 105 bytes.

4.2.4 On the usefulness of additional transactions in the compact block

relay protocol

Recall that the compact block protocol sends additional transactions as part of the

cmpctblock messages. These are full transactions that the source node SRC predicts

the receiving node DST may be missing from its mempool. In this section, we examine

if these additional transactions are useful at all.

Denote by S1 the set of additional transactions included in a block received by a

99

100 101 102 103 104

txs in block

103

104

105

106

S
iz
e
o
f
fi
r
st

b
lo
c
k
m
sg

(b
y
te
s)

100

101

102

103

104

#
a
d
d
it
io
n
a
l
tx

s
in

b
lo
c
k
m
sgCompact blocks

Additional Txn

Figure 4·9: Sizes of the cmpctblock messages (left y-axis) and the
number of additional transactions in blocks (right y-axis) against the
number of transactions in the respective compact blocks. There exists
a direct correlation between the number of additional transactions in
and the sizes of the cmpctblock messages

node, and by S2 the set of transactions contained in the mempool of the node when

the block is received. The number of useful additional transactions, i.e., transactions

included in S1 but not in S2, is given by | S1 \S2 | where \ denotes set subtraction.

The statistics on number of useful additional transactions in cmpctblock messages

are shown in Figure 4·10 . The x-axes show the number of additional transactions

in a cmpctblock message and the y-axes show the number of useful additional trans-

actions. The straight x = y line represents 100% useful additional transactions in the

cmpctblock message. The őgure is divided into two halves where the upper half rep-

resents statistics in the statistical churn regime and the lower half in the always

on regime. Note that both x-axes and y-axes are plotted on a log scale.

It can be observed from the őgure that churning nodes have relatively more in-

stances of useful additional transactions compared to always on nodes. This is because

100

the former are likely to miss more transactions from their mempool than the latter

since they were off the network. However, in both type of nodes, cmpctblock mes-

sages rarely have 100% useful additional transactions. In fact, in many cases, the

only useful additional transaction in both churning and always connected nodes is

the coinbase transaction, regardless of the number of additional transactions in the

cmpctblock message. The data point clusters in the middle of the two halves of the

őgures show that in a few cases, some additional transactions other than the coin-

base transactions are useful. However, even in those cases, the difference between the

number of additional transactions and the number of useful additional transactions

is usually high (up several orders of magnitude).

We next investigate whether useful additional transactions in cmpctblock mes-

sages save round-trip communication. That is, does the DST still misses transactions

after receiving useful additional transactions included in a cmpctblock message? We

next present statistics to answer these questions.

Denote by M the set of transactions in a node’s mempool when it receives a block,

by T the set of missing transactions in the block, and by A the set of additional

transactions in the cmpctblock message for that block. Then X = T \M is the set

of transactions in the block that are missing from the node’s mempool, and Y = A∩

(T \M) is the set of additional transactions that help recover the missing transactions.

Our analysis shows that in both churning and always connected nodes, roughly

87% of cmpctblock messages contain only one additional transaction, i.e., the coin-

base transaction which, is always helpful. In the remaining cmpctblock messages, we

exclude the coinbase transaction for further analysis. There are now three cases: a)

the additional transactions are not helpful at all, i.e., |Y | = 0; b) additional trans-

actions are partially helpful, but not enough to recover all transactions in X, i.e.,

Y ̸= X given |Y | > 0; or c) additional transactions are completely helpful and recover

101

0 100 101 102 103 104

additional txs

0

100

101

102

103

104

#
u
s
e
fu
l
a
d
d
it
io
n
a
l
t
x
s

0100101102103104
additional txs

0

100

101

102

103

104

#
u
s
e
fu
l
a
d
d
it
io
n
a
l
t
x
s

Always on Statistical churning

Figure 4·10: Number of useful additional transactions in cmpctblock

messages against the total number of additional transactions in respec-
tive cmpctblock messages in (lower half) always on and (upper half)
statistically churning nodes. The diagonal (x = y) represents the case
when 100% of the additional transactions in cmpctblock messages are
useful.

all transactions in X, i.e., Y ≡ X. We őnd that there are no instances where the

additional transactions are completely helpful to recover all transactions in X. On

the other hand, additional transactions in roughly 84% of cmpctblock messages are

not helpful at all. In the remaining roughly 16% of cmpctblock messages, additional

transactions are partially helpful, i.e., not enough to recover all transactions in X.

Our őndings in this section show that while additional transactions (excluding

the coinbase transaction) are sometimes helpful, in many instances they are either

duplicates and thus end up wasting bandwidth, or not enough to completely recover

transactions in blocks that may be missing in the node’s mempool. Our calculations

show that in the always on and statistical churn regimes, roughly 90% and 96%,

respectively, of bandwidth consumed by additional transactions is unnecessary and

102

wasted.

4.3 Summary

The main results from the work presented in this chapter are summarized below.

• We have empirically demonstrated and compared the performance of the Graph-

ene, compact, and default block relay protocols in full nodes connected to the

live Bitcoin Cash network via an instrumentation-capable version of the Bitcoin

Unlimited client in three different network regimes.

• We show that in the always on and statistical churn regimes, the Graphene

block relay protocol always performs better than the compact and default block

relay protocols which respectively have roughly 40% and 500% higher propaga-

tion delays and over 80% and 150% larger communication sizes.

• We őnd that in the periodic churn regime, the Graphene block relay protocol

generally performs better than the compact and default block relay protocols

except for a few cases in which the compact block relay protocol performs better.

We take a deep dive into why this happens and discover that frequently churning

nodes may need to perform as many as two extra round-trips of communication

to recover information necessary to successfully reconstruct Graphene blocks.

• We perform an in-depth analysis of the cmpctblock message in the compact

block relay protocol and identify an inefficiency such that in many cases, the

additional full transactions included in the message are always either not useful

at all for or not enough for successful reconstruction of compact blocks resulting

in an over 90% wasted bandwidth.

Based on the results obtained in this chapter, it seems preferable to conőgure nodes

with the Graphene block relay protocol under typical network conditions. However,

103

it may be more beneőcial for frequently churning nodes to be conőgured with the

compact block protocol. The methodology employed in this chapter can be further

extended to other block relay protocols in different blockchains for a much wider

comparison between the protocols.

104

Chapter 5

Orphan Transactions in the Bitcoin Network

In Chapter 3 , we presented an extensive study on the impact of churn ś an effect

created by the independent arrival and departure of nodes in a peer-to-peer net-

work [99]. We noticed during our measurement campaigns that some transactions

ended up becoming orphan, that being transactions whose parental income sources

are not known to full nodes upon receiving such transactions (see Section 2.3 for de-

tails). Bitcoin transactions have received a fair amount of attention in the literature.

Subset of this work have focused on elements such as an analysis of the transaction

graphs [219ś225], security of transactions [226ś231], studies on transaction conőrma-

tion times [232ś235], and the like.

Understanding the properties and behavior of orphan transactions, however, is a

largely unexplored őeld. The closest works have been on utilizing orphan transactions

as a side-channel for topology inference [40], and for denial of service attacks on the

Bitcoin network [41, 42]. However, many of the performance questions regarding

orphan transactions remain: To what extent orphan transactions are prevalent in the

Bitcoin network? What are the factors that make a transaction orphan? What is

the impact of an orphan transaction on the performance of the Bitcoin ecosystem?

Does an orphan transaction incur latency or communication overhead? If so, can one

reduce this overhead? Is there a connection between churning of a full node and the

transactions it receives becoming orphan? There exists no work, to the best of our

knowledge, that reasonably answers these questions.

105

In this chapter which is based on our work published in the proceedings of the

IEEE International Conference on Blockchain and Cryptocurrency 2020 [38] for which

we also won the Best Paper Award [236], and the IEEE Transactions on Network

and Service Management [39], we seek to more precisely understand the context

under which a transaction becomes an orphan, including the properties of parent

transactions that produce this effect.

The rest of this chapter is organized as follows: In Section 5.1 , we character-

ize orphan transactions by studying the properties of their parents and investigate

presence of orphan transactions in blocks. We show the impact of orphan trans-

actions with varying orphan pool sizes and varying orphan transaction timeouts in

Section 5.2 . In Section 5.3 , we study the behavior of orphan transactions in

new nodes and nodes that have rejoined the network after a considerably long down-

time. We present a discussion of our work, including limitations, in Section 5.4 .

Section 5.5 summarizes the main őndings in the chapter.

5.1 Characterization of orphan transactions

We detail our approaches toward characterizing the orphan transactions in the Bitcoin

network. We begin with a presentation of our set up for data collection. Since a

transaction becomes orphan due to the absence of one or more parents, we next focus

on determining the characteristics of these missing parents. In particular, we compare

the number of parents of orphan transactions with the number of parents of all non-

orphan transactions. Afterwards, we consider the differences between the transaction

fee, transaction size, and transaction fee per byte of the missing parents of orphan

transactions versus all other transactions. Finally, we investigate the presence of

orphan transactions in blocks and the delay in receiving missing parents from peers,

and observe the effect of low transaction fees on the propagation of transactions.

106

5.1.1 Measurement setup

For Sections 5.1.2 to 5.1.5 , we run two live full nodes N1 and N2 as part of

the Bitcoin network, with the aim of collecting data for characterizing orphan trans-

actions. Both nodes execute Bitcoin Core v0.18 [237] on the Linux Ubuntu 18.04.2

LTS distribution, running on Dell Inspiron 3670 desktops, each equipped with an

8th Generation Intel® Core i5−8400 processor (9 MB cache, up to 4.0 GHz), 1 TB

HDD and 12 GB RAM. The nodes are connected to the Bitcoin network at all times

with the default orphan pool size of 100. We collect relevant data, such as arrival

of transactions, addition of transactions to the orphan pool, and the like, with the

help of relevant extensions to the log-to-őle system described in Section 3.2.1 , for

roughly 2 weeks over two rounds (November 18, 2019 11:00 AM EST to November

25, 2019 10:59 AM EST, and November 25, 2019 11:00 AM EST to December 02,

2019 10:59 AM EST).

In Sections 5.1.6 to 5.1.8 , we extend our measurement setup to four nodes

with similar hardware and software speciőcations as mentioned above. The exper-

iments run from July 6, 2020 3:00 PM EST for two weeks for Sections 5.1.6

and 5.1.7 , and from November 11, 2020 1:30 PM EST for roughly one week for

Section 5.1.8 .

5.1.2 Number of parents

Our őrst conjecture is that a transaction with a large number of parents may be

more likely to miss one or more parents than a transaction with, say, only a couple

of parents. To this effect, we compare the number of parents of orphan transaction

with the number of parents of all other non-orphan transactions.

During the measurement period, the nodes receive an aggregate of 4.20×106 unique

transactions with 9.23 × 106 parents. Of these, 8.71 × 104 are orphan transactions

107

100 101 102 103

Number of parent transactions p

0.00

0.05

0.10

0.15

0.20
P
(
#

o
f
p
a
r
e
n
t
T
X
s
>

p
)

Orphan transactions

Non-orphan transactions

Figure 5·1: Empirical complementary cumulative distribution func-
tion (CCDF) of

(

i
)

the number of parents of orphan transactions and
(

ii
)

number of parents of non-orphan transactions. In general, orphan
transactions have fewer parents.

with 1.03 × 105 parents. These orphan transactions have an aggregate of 8.71 × 104

parents missing across the nodes. These nodes miss, on average, 1.23 parents per

orphan transaction with a standard deviation of 4.68 parents. While only just above

2% of the received transactions become orphan, the total number is still signiőcant.

Figure 5·1 shows the complementary cumulative distribution functions (CCDF)

of the number of parents of orphan transactions, and the CCDF of the number of

parents of non-orphan transactions. We observe that our conjecture is ŕipped - the

orphan transactions have a smaller number of parents. Indeed, only about 4% of

orphan transactions have more than one parents, whereas roughly 25% of non-orphan

transactions have more than one parent.

The most parents of an orphan transaction are 1.03 × 103, whereas this number

is 1.10 × 103 for non-orphan transactions. On average, an orphan transaction has

1.18 parents with a standard deviation of 4.78 transactions. On the other hand, a

non-orphan transaction has, on average, 2.20 parents with a standard deviation of

108

102 103 104 105 106 107

Transaction fee f (in satoshis)

0.0

0.2

0.4

0.6

0.8

1.0

P
(
T
r
a
n
s
a
c
t
io
n

fe
e
≤

f
)

Missing parents of orphans

All other transactions

Figure 5·2: Cumulative distribution functions (CDFs) of transaction
fee of missing parents of orphan transactions, and transaction fee of all
other transactions.

11.84 transactions.

Surprisingly, orphan transactions do not necessarily have more parents than non-

orphan transactions, and we are left to rely on other statistics, presented in the next

few sections, to characterize the orphan transactions.

5.1.3 Transaction fee of missing parents

For each incoming transaction that is orphaned, we log the missing parent(s) that

results in the transaction becoming orphan. We analyze and compare the transaction

fees of these missing parents with all other transactions received by our nodes that

are not a missing parent of an orphan transaction. We query the database maintained

by the Bitcoin software for relevant data on transactions. Out of 8.71× 104 missing

parents, only about 3% are still missing by the end of the measurement period.

Henceforth, we assume that this relatively small fraction does not pose a bias towards

our őndings.

Figure 5·2 shows the cumulative distribution functions (CDFs) of transaction

109

fees (in satoshis) of missing parents, and the CDF of transaction fees (in satoshis)

of all other transactions received by the nodes. The őgure shows that a majority of

the missing parents have a lower transaction fee compared to all other transactions

received. Indeed, 50% of missing parents have a transaction fee smaller than 210

satoshis. On the other hand, fewer than 6% of all other transactions have a transaction

fee of smaller than 210 satoshis.

In fact, the average transaction fee of a missing parent is 5.56×103 satoshis with a

standard deviation of 7.17× 104 satoshis. In comparison, the average transaction fee

of all other transactions is 9.91× 103 satoshis with a standard deviation of 5.53× 104

satoshis. Interestingly, 18 of the missing parents have no transaction fee at all (i.e.,

0 satoshis), whereas all other transactions received have a non-zero transaction fee.

Therefore, a transaction is likely to become an orphan, if its missing parent has a

transaction fee lower than that of other transactions. As a future work, it would be

interesting to deduce if there exists a threshold for the transaction fee below which

all transactions become missing, i.e., they are not relayed by the network.

5.1.4 Transaction size of missing parents

We next compare the sizes of missing parents of orphan transactions with the sizes

of all other transactions. Do the missing parents of orphan transactions have a larger

size than an average transaction?

Figure 5·3 shows the CCDF of the size of missing parents of orphan transactions

(in bytes) and the CCDF of the size of all other transactions. The őgure shows that

missing parents usually have a larger size than all other transactions. Roughly 90%

of the missing parents have a size larger than 250 bytes, whereas only about 45% of

all other transactions have a size larger than 250 bytes.

Missing parents of orphan transactions have a size between 1.88×102 and 2.40×105

bytes. By comparison, all other transactions have a size in the range of 8.50 × 101

110

102 103 104 105

Transaction size s (in bytes)

0.0

0.2

0.4

0.6

0.8

1.0

P
(
T
r
a
n
s
a
c
t
io
n

s
iz
e
>

s
)

Missing parents of orphans

All other transactions

Figure 5·3: CCDFs of transaction size of missing parents of orphan
transactions, and transaction size of all other transactions.

to 2.24 × 105 bytes. In fact, on average, missing parents have a size of 5.29 × 102

bytes with a standard deviation of 4.02 × 103 bytes. On the other hand, all other

transactions have, on average, a size of 4.80× 102 bytes with a standard deviation of

2.12× 103 bytes.

The statistics in this section show that the missing parents of orphan transaction

have, on average, a larger transaction size than all other transactions. As in the

previous section, we leave to future work the question whether there exists a size

threshold above which transactions stop being propagated through the network.

5.1.5 Relating transaction fee to size of missing parents

We showed in Sections 5.1.3 and 5.1.4 that, in aggregate, missing parents tend

to have a lower fee and a larger size than the average received transactions. However,

it would be interesting to see if there exists a relation between the fee and size of each

individual transaction.

To this end, Figure 5·4 shows the CDF of transaction fee per byte (in satoshis)

111

100 101 102 103 104

Transaction fee per byte f (in satoshis)

0.0

0.2

0.4

0.6

0.8

1.0

P
(
T
X

fe
e
p
e
r
b
y
te

≤
f
)

Missing parents of orphans

All other transactions

Figure 5·4: CDFs of transaction fee per byte of missing parents of
orphan transactions, and transaction fee per byte of all other transac-
tions.

of missing parents and the CDF of transaction fee per byte of all transactions received.

The őgure shows that the missing parents generally have a lower transaction fee per

byte when compared to all received transactions. Indeed, 80% of missing parents

have a transaction fee per byte of 5.97 satoshis or less, whereas roughly 78% of all

received transactions have a transaction fee per byte higher than 5.97 satoshis.

On average, missing parents have a transaction fee per byte of 6.25 satoshis with

a standard deviation of 21.52 satoshis. On the other hand, all received transactions

have a transaction fee per byte of 21.73 satoshis with a standard deviation of 47.13

satoshis.

Our data thus show that individual missing parents have a low transaction fee

per byte. This could be because transactions with lower fees may not get prop-

erly propagated through the Bitcoin network [238], possibly because of conőgurable

mempool size [239]. Note that nodes may choose not to accept transactions with

a low transaction fee per byte to their mempool, and thereby not propagate them

112

100 101 102 103 104 105

Time t (s)

0.0

0.2

0.4

0.6

0.8

1.0
P
(
T
im

e
≤

t
)

Figure 5·5: CDF of time elapsing from the point a transaction is
removed from the orphan pool because its missing parents are found
till the block containing the said orphan transaction is received.

further [240].

5.1.6 Orphan transactions in blocks

Next, we examine what fraction of orphan transactions end up being included in

blocks. Each node receives on average 1.58 × 103 blocks during the measurement

period. Similarly, each node adds on average 4.64 × 104 unique transactions to its

orphan pool (we show in Section 5.2.3 that the same transaction may be added

multiple times to the orphan pool - here we make sure to count such a transaction

only once). Out of these unique orphan transactions, on average, 2.06× 104 transac-

tions, i.e., 44.50%, appear in blocks received by the nodes during the measurement

period. A block received during this period contains, on average, 2.17× 103 transac-

tions with a standard deviation of 7.31 × 102 transactions. Of these, an average of

13.06 transactions were orphan at some point during the measurement period, with

a standard deviation of 25.90 transactions.

113

We next check whether orphan transactions were recovered (i.e., removed from

the orphan pool) before they appear in blocks. Speciőcally, we investigate whether

missing parents of these orphan transactions were received from peers or not. Our

analysis shows that only about 11% of the orphan transactions that appear in blocks

were recovered before the respective block is received. For such orphan transactions,

Figure 5·5 shows, on an aggregate level, the CDF of the time elapsing from the

point a transaction is removed from the orphan pool because its missing parents are

found till the block containing the said orphan transaction is received. On average,

missing parents of such orphan transactions are found 5.70× 103 seconds before the

block containing the orphan transaction is received, with a standard deviation of

2.04× 104 seconds.

We őnd that many missing parents (i.e., on average, 67.58% of the total), of

orphan transactions appear in the same block as the latter. The remaining miss-

ing parents (i.e., 32.42% of the total) appear in a block received prior to the block

containing the orphan transaction. Hence, many orphan transactions remain in that

state until they are added into a block. This could lead to inefficiencies in the Bitcoin

protocol [68, 241] since transactions are not propagated to peers for as long as they

remain orphan (see Section 2.3).

5.1.7 Delay in receiving missing parents from peers

As noted in Section 2.3 , when a node adds a transaction to its orphan pool, it sends

requests for the missing parents to the peer that sent the transaction. Therefore, we

next investigate, on an aggregate level, how long it takes for a requested missing

parent of a transaction to be found once it is added to the orphan pool. In our

experiment, orphan transactions have a total of 2.03× 105 missing parents. Of these,

only 3.24×104 are found during the measurement period (see Section 5.1.1) which

represents about 15.98% of the total number of missing parents recorded.

114

100 102 104 106 108

Time t (ms)

0.0

0.2

0.4

0.6

0.8

1.0
P
(
T
im

e
>

t
)

Figure 5·6: CCDF of time elapsing from the point a transaction be-
comes orphan till one of its parents is found.

Figure 5·6 shows for the requested missing parents that are found (i.e., sent by a

peer), the CCDF of time elapsing from the point a transaction is added to the orphan

pool till its missing parent is found (or one of the missing parents is found in the case

of multiple parents). We observe that 10% of such missing parents are found within

roughly 550 ms. Yet, on average, a missing parent is found within 2.89 × 107 ms,

i.e., roughly 8 hours after the respective child transaction was added to the orphan

pool, with a standard deviation of 3.91× 107 ms. We note that the average delay is

high because many missing parents are found several hours after the respective child

transaction becomes orphan. Indeed, about 50% of the missing parents are found

at least 2 hours after the respective child transaction is added to the orphan pool.

Similarly, roughly 35% of the missing parents have a delay larger than the mean.

115

10−1 100 101 102 103 104 105 106

Time spent in relay queue t (ms)

0.0

0.2

0.4

0.6

0.8

1.0
P
(
T
im

e
sp

e
n
t
in

q
u
e
u
e
>

t
)

Parent transactions relayed
with child transactions

Parent transactions relayed
before child transactions

Figure 5·7: CCDFs of time spent in relay queue of parent transactions
that are relayed with and parent transactions that are relayed before
their respective child transactions.

5.1.8 Impact of transaction fee

The őndings in Section 5.1.6 showed that some parent transactions take a long

time to be recovered. To explain this, we next perform an analysis of the propagation

of transactions to show the effect of low transactions fees. For this purpose, we collect

all transactions that are announced by our measurement nodes to their peers during

the measurement period. Next, we identify pairs of transactions in our data set that

have a child-parent relationship, i.e., both the child and parent transactions were

announced to the same peer. We compare and contrast two cases of interest, namely

when a parent transaction is announced to a peer
(

i
)

before the child transaction; or
(

ii
)

together with its child transaction.

Recall that when a node receives a transaction, it performs various validation

checks before adding the transaction to its mempool. Once the transaction passes

all validation checks, it is added to the mempool as well as to a relay queue. The

116

102 103 104 105 106 107 108

Transaction fee f (in satoshis)

0.0

0.2

0.4

0.6

0.8

1.0
P
(
T
r
a
n
s
a
c
t
io
n
fe
e
>

f
)

Parent-child transactions
relayed together

Parent-child transactions
not relayed together

Figure 5·8: CCDFs of transaction fee of parent transactions that
are relayed with and parent transactions that are relayed before their
respective child transactions.

transaction is eventually retrieved from the relay queue and propagated to peers of

the node. The transactions are retrieved from the queue in order of their transaction

fees, i.e., the transactions, grouped with their ancestors in the relay queue, with

higher fees are announced őrst.

Our őrst comparison is based on the delay from the point a transaction is added to

the relay queue until it is sent out to peers of the node. We perform this analysis for

both cases of interest identiőed earlier. Figure 5·7 shows the CCDFs of time spent

in the relay queue for both cases. The őgure shows that parent transactions that

are relayed together with their child transactions spend more time in the relay queue

than parent transactions that are relayed before their child transactions. Indeed, the

former spend, on average, 2.97× 104 ms in the relay queue with a standard deviation

of 6.14× 104 ms. The latter, on the other hand, spend, on average, 6.42× 103 ms in

the relay queue with a standard deviation of 1.71× 104 ms.

117

Our next comparison is depicted in Figure 5·8 , which shows the CCDFs of

the transaction fee of the two types of parent transactions. The őgure indicates that

parent transactions that are announced to peers together with their child transactions

usually have a smaller transaction fee than parent transactions that are announced

to peers before their child transactions. We őnd that the former have, on average, a

transaction fee of 2.02× 104 satoshis with a standard deviation of 7.32× 104 satoshis.

The latter, on the other hand, have, on average, a transaction fee of 8.72×104 satoshis

with a standard deviation of 3.32× 105 satoshis.

The results of this section show that transactions with low transaction fees spend

more time in the relay queue. Many such transactions are announced to peers only

when their child transactions are also added to the queue. We hypothesize that the

child and parent transactions together have enough fee to offset the low transaction

fee of the parent transaction.

5.2 Comparison of orphan transaction behavior with different

orphan pool parameters

We next characterize the network and performance overhead incurred by orphan

transactions, looking at both the default orphan pool size of 100 transactions, and

various alternative pool sizes. We begin with a presentation of our extended mea-

surement setup, followed by an investigation of the network overhead under additions

and removals of orphan transactions for different orphan pool sizes. Next, we discuss

performance overhead that a larger orphan pool size may present. Finally, we present

the effect of varying orphan transaction timeouts.

5.2.1 Measurement setup

For Sections 5.2.2 to 5.2.5 , we extend our measurement setup from Section 5.1.1

to six live full nodes, running with identical hardware and software speciőcations as

118

before. We run two rounds of experiments. In the őrst round, which runs from

November 18, 2019 11:00 AM EST to November 25, 2019 10:59 AM EST, two nodes

are conőgured with a default orphan pool size of 100 transactions (nodes N1 and

N2), two nodes with an orphan pool size of 20 transactions (nodes N3 and N4), and

the remaining two nodes with an orphan pool size of 50 transactions (nodes N5 and

N6). In the second round, which runs from November 25, 2019 11:00 AM EST to

December 02, 2019 10:59 AM EST, two nodes are conőgured with a default orphan

pool size of 100 transactions (nodes N1 and N2), two nodes with an orphan pool size

of 500 transactions (nodes N3 and N4), and the remaining two nodes with an orphan

pool size of 1,000 transactions (nodes N5 and N6). We have made all relevant logs

generated during the experiments open source and accessible on GitHub [242].

Since our nodes are co-located, we want to verify that the nodes connect indepen-

dently to outside peers in the network, and that our co-location does not impose a

bias in the measurements. We achieve this by recording a node’s connected peers over

time, in one second intervals. We then check for common peers amongst the nodes

throughout the measurement period, i.e., both the őrst and the second rounds.

Figure 5·9 and Figure 5·10 show the common peers amongst nodes during the

measurement period (i.e., the őrst and second rounds of measurement respectively)

as similarity matrices. A similarity score of 1.0 between two nodes indicates that

both nodes have exactly the same peers; a similarity score of 0.0 indicates that the

corresponding nodes have no common peers. The matrices in the őgures qualitatively

suggest that the six nodes have a very low number of peers in common, and therefore,

do not present bias towards measurements.

In fact, the maximum number of peers that all six nodes have in common during

the őrst round of measurements was 11 peers out of a maximum of 124 peers. On

average, at any second during the measurement period, all six nodes have 8.30 peers

119

N1 N2 N3 N4 N5 N6

Nodes

N1

N2

N3

N4

N5

N6

N
o
d
e
s

0.2

0.4

0.6

0.8

1.0

Figure 5·9: Similarity matrix depicting average number of common
peers across nodes during the őrst round of measurement period.

in common with a standard deviation of 1.04 peers. Similarly, during the second

round of measurements, the maximum number of peers that all six nodes have in

common is 11 peers out of a maximum of 124 peers. On average, at any second

during the measurement period, all six nodes have 8.51 peers in common with a

standard deviation of 0.92 peers. These statistics conőrm that nodes largely connect

to, and interact with peers independently.

For Section 5.2.6 , we extend our measurement setup from Section 5.1.1 to

twelve live full nodes, running with identical hardware and software speciőcations as

before. Our experiments run uninterrupted for two weeks from June 17, 2020 12:00

PM EST to July 1, 2020 11:59 AM EST. We conőgure two nodes with a timeout of 10

minutes, two nodes with a timeout of 15 minutes, four nodes with the default timeout

120

N1 N2 N3 N4 N5 N6

Nodes

N1

N2

N3

N4

N5

N6

N
o
d
e
s

0.2

0.4

0.6

0.8

1.0

Figure 5·10: Similarity matrix depicting average number of common
peers across nodes during the second round of measurement period.

of 20 minutes, two nodes with a timeout of 30 minutes, and the remaining two nodes

with a timeout of 60 minutes. We conőgure all nodes with an orphan pool size of 500

transactions, since smaller sizes lead to a large fraction of evictions as discussed in

Section 5.2.2 .

5.2.2 Removal of orphan transactions from orphan pool

As speciőed in Section 2.3 , there are six different cases in which a transaction is

removed from the orphan pool. In this section, we analyze the fraction of orphan

transactions that are removed from the orphan pool in each case.

Speciőcally, Figure 5·11 shows the fraction of transactions removed from the

orphan transaction falling within each of the six cases across the nodes with varying

121

20 50 100 500 1000

Orphan pool size

0

20

40

60

80

100

O
r
p
h
a
n

T
X
s
r
e
m
o
v
e
d

(
%

)

3.
27
%

7.
03
%

8.
06
%

9.
22
%

9.
88
%

0.
33
%

1.
26
%

2.
22
%

4.
16
%

9.
19
%

93
.4
0%

77
.6
9%

65
.1
0%

24
.4
5%

1.
89
%

2.
21
% 11

.4
2% 20
.0
6%

54
.6
5%

69
.6
3%

0.
04
%

0.
23
%

0.
51
%

0.
15
%

0.
50
%

0.
75
%

2.
36
%

4.
06
%

7.
36
%

8.
92
%

Parent transactions received
Parent transactions in block
Orphan pool full

Timeout
Invalid orphan transaction
Peer disconnected

Figure 5·11: Fraction of orphan transactions that are removed from
the orphan pool due to each of the six causes across all nodes, under
different pool sizes.

orphan pool sizes.

One trend is apparent: the major cases of transaction removal from the orphan

pool are when the pool is full and when a transaction overstays its maximum allowed

time in the pool. The őgure clearly shows that as the size of the orphan pool increases,

the major case of eviction of transactions from the orphan pool changes from the

pool being full to the transactions timing out. That is, as the size of the orphan

pool increases, more transactions are removed from the orphan pool due to timeout

rather than a full orphan pool. In fact, one of the nodes conőgured with an orphan

pool of size 1,000 (i.e., node N6) has no transactions evicted from the orphan pool,

indicating that the pool never becomes full.

The remaining four cases contribute very little to the transaction being removed

from the orphan pool. Of these, the major case that of transaction eviction from

the orphan pool, across nodes, is that the node receives the missing parent it had

requested from its peers. Figure 5·11 shows that as the size of the orphan pool

increases, the fraction of orphan transactions that receive their respective missing

122

20 50 100 500 1000

Orphan pool size

0

50

100

150

200

250

O
r
p
h
a
n

tr
a
n
sa
c
ti
o
n
s
(
%

) Unique orphan
transactions

All orphan
transactions

Figure 5·12: Number of unique and total number of orphan transac-
tions received across nodes with varying orphan pool sizes.

parents gradually increases.

5.2.3 Addition of orphan transactions to orphan pool

In the previous section, we showed that for smaller orphan pools, most transaction

removals occur when the pool becomes full. However, this is not the case with orphan

pools of larger sizes. Once an orphan transaction is removed from the orphan pool

without being added to the mempool (see Section 2.3), it may be added back to

the orphan pool. This happens when, after its removal from the orphan pool, a peer

announces the same transaction while its parents are still missing from the mempool

or the blockchain. In this section, we speciőcally look at the number of times a

transaction may be added to the orphan pool with varying orphan pool sizes.

To this end, the left bar in each column of Figure 5·12 shows the unique trans-

actions added to the orphan pools with varying sizes. The right bar of the respective

column shows the total transactions added to the orphan pools with varying sizes.

123

All values are normalized to the average number of unique transactions added to

the orphan pools with a default size of 100 over the measurement period which, on

average, is 5.72× 104 transactions.

We observe yet another trend: for smaller orphan pool sizes, identical transactions

may be added several times to the orphan pool. This is likely because smaller orphan

pool őll more quickly as the number of incoming orphan transactions grows. As such,

transactions need to be removed more often from the orphan pool whilst they are still

orphan - a peer may re-announce a transaction that was previously removed from the

orphan pool. Because the node does not have the transaction in either its mempool

or the orphan pool, it accepts the transaction again to its orphan pool.

When the size of the orphan pool is larger than the default size of 100, the number

of duplicate additions of transactions to the orphan pool goes down. This is likely

due to the availability of space in the orphan pool for new orphan transactions; fewer

transactions need to be evicted from the orphan pool. In the next section, we explain

why multiple additions may pose a problem for network efficiency.

5.2.4 Network overhead

We next estimate the network overhead (i.e., the number of bytes received) caused

by receiving duplicate orphan transactions from peers. In our experiments, each time

an orphan transaction is received, we add the size of the transaction: 32 bytes for

the transaction hash in the inv message [243] and 32 bytes for the transaction hash

in the getdata message [244]. Note that this provides a lower bound for the number

of bytes transmitted each time a transaction is received, as the inv and getdata

messages contain other őelds, the total size of which would depend on the number of

transactions packed in each message. We do not include this size in our calculation for

simplicity. Similarly, we do not include the transport layer overhead in our estimation.

Figure 5·13 shows statistics on the network overhead for duplicate orphan trans-

124

actions received for the varying orphan pool sizes. The lower part of the stacked bar

in each column shows the total number of bytes that are received when all unique

orphan transactions are received for the őrst time. The upper part of the stacked bar

in the respective column shows total number of bytes received when duplicates of the

orphan transactions are received; note that the Y -axis in this őgure is logarithmic.

We also provide the cost of receiving duplicate orphan transactions (above each bar)

as a fraction of the cost of receiving each orphan transaction for the respective orphan

pool size. Assuming that the arrivals of orphan transactions is evenly distributed over

the measurement period, an orphan pool size of 20 translates to an average rate of

1.32 kbps of transaction data in Figure 5·13 . On the other hand, for an orphan

pool size of 1,000, the average arrival rate of orphan transactions translates to only

about 0.13 kbps of transaction data.

From the őgures, we see that nodes with a smaller orphan pool size incur a larger

network overhead due to the repeated addition of orphan transactions to the orphan

pool. On the contrary, nodes with an orphan pool of larger size incur minimal network

overhead, since the number of duplicate orphan transactions received is smaller (see

Section 5.2.3).

5.2.5 Performance overhead

Finally, we explore the CPU and memory overhead incurred by varying orphan pool

sizes. We empirically measure the CPU overhead with data from Unix procfs, and

approximate the memory overhead. Our analysis shows that larger orphan pool sizes

do not incur notable overhead for our node systems.

CPU overhead. The CPU overhead is observed by recording the CPU usage of

the Bitcoin process every time an orphan transaction is added or removed from the

orphan pool. Table 5.1 shows the average CPU usage of the Bitcoin process over the

125

20 50 100 500 1000

Orphan pool size

106

107

108

N
u
m
b
e
r
o
f
b
y
te
s

453.26%

14.35%

17.64%

1.81%
2.91%

First transactions

Overhead due to
duplicate
transactions

Figure 5·13: Network overhead incurred by nodes with varying orphan
pool sizes across nodes.

measurement period. The table shows that the difference in the average CPU usage

of the Bitcoin process is barely distinguishable among the various orphan pool sizes.

We attribute this to the data structure used for the orphan pool: relevant std::map

operations typically have worst-case logarithmic time complexity [245ś247].

Memory overhead. The Bitcoin core maintains three data structures related to

orphan transactions. The őrst data structure represents the orphan pool. Each

entry for an orphan transaction in the orphan pool contains
(

i
)

the hash of the

transaction (32 bytes),
(

ii
)

a pointer to the actual transaction (16-byte integer on 64-

bit architecture; 8-byte integer on 32-bit architecture; the size of this pointer is double

that of an ordinary pointer because a std::shared_ptr is made of 2 pointers [248],
(

iii
)

the ID of the peer that sent the transaction (8-byte integer),
(

iv
)

expiration

time of the transaction (8-byte integer), and
(

v
)

position of orphan transaction in

the orphan pool (8-byte integer on 64-bit architecture; 4-byte on 32-bit architecture).

126

Nodes
Round 1 Round 2

Add
(%)

Remove
(%)

Add
(%)

Remove
(%)

N1 18.23 17.26 18.71 16.90
N2 15.26 13.53 15.86 13.36
N3 18.67 18.61 18.37 17.36
N4 16.37 13.86 15.95 13.33
N5 18.22 17.90 18.67 17.58
N6 15.85 13.31 16.84 13.94

Table 5.1: Average CPU usage of nodes with different orphan pool
sizes.

Considering that the transaction would be stored in the mempool anyway if it

were not an orphan, each orphan transaction incurs a memory overhead of 72 bytes

on a 64-bit architecture, and 60 bytes on a 32-bit architecture.

The second data structure is used to maintain links between a missing parent

and all orphan transactions that may spend from it. This efficiently resolves orphan

status of all orphan transactions that depend on a missing parent once the latter is

received from peers.

Each entry in this data structure contains
(

i
)

the hash of the parent (32 bytes),
(

ii
)

the index of the parent in the orphan transaction (4 bytes), and
(

iii
)

a pointer

to the orphan transaction in the orphan pool (8-byte integer on 64-bit architecture;

4-byte integer on 32-bit architecture). That is, each entry in this data structure takes

up 36 + 8 × N bytes on a 64-bit architecture, and 36 + 4 × N bytes on a 32-bit

architecture, where N is the number of all orphan transactions that spend from a

missing parent.

It is tricky to theoretically justify a hard bound on the overhead incurred by this

data structure. A transaction may spend from an arbitrary number of parents, an un-

known number of which may be missing. Furthermore, not all parents may be missing

at the same time, i.e., a peer may not respond with all requested missing parents at

127

the same time. On the other hand, an arbitrary number of orphan transactions may

spend from the same missing parent.

Our empirical data, however, suggests that, orphan transactions across nodes with

the varying orphan pool sizes have, on average, between 1 and 4 missing parents.

where transactions across nodes with smaller pool sizes miss more parents; transac-

tions across nodes with larger orphan pool sizes are very unlikely to miss more than 1

parent. Indeed, more than 90% of orphan transactions received by nodes conőgured

with an orphan pool of size 1,000 miss only 1 parent.

Similarly, across nodes with varying orphan pool sizes, the number of missing

parents that orphan transactions share is in the range (0, 1) on average. For every

node, more than 98% of all orphan transactions received by that node share no parent.

Finally, for efficient random eviction of transactions from the orphan pool when

the pool is full, a list is maintained. Each entry in the list is a pointer to a transaction

in the orphan pool, with an overhead of 8-bytes for a 64-bit architecture and 4-bytes

for a 32-bit architecture.

Consider, for example, a node conőgured with an orphan pool of size 1,000 on a

64-bit architecture. This conőguration incurs an average memory overhead of roughly

72 KB for the őrst data structure, 44 KB for the second data structure, and 8 KB

for the third data structure for an aggregated average overhead of 122 KB, several

orders of magnitude smaller than the typical memory on a modern system.

5.2.6 Varying orphan transaction timeouts

The őndings in Section 5.2.2 show that as one increases the size of the orphan pool,

transactions get primarily evicted due to timeouts. A natural question is whether

changing the timeout from the default value of 20 minutes may help improve perfor-

mance, and in particular the recovery of missing parents. Toward this end, we next

present experimental results to evaluate the impact of varying timeouts.

128

10 15 20 30 60

Orphan transaction timeout t (m)

0

10

20

30

40

50

60

70
O
r
p
h
a
n

T
X
s
r
e
m
o
v
e
d

(
%

)

4.
03
%

5.
60
%

8.
14
%

5.
81
% 10

.6
3%

0.
11
%

0.
51
%

7.
36
%

0.
65
%

0.
30
%

23
.3
6%

24
.6
2%

9.
33
%

22
.0
4%

9.
17
%

48
.1
0%

45
.1
8%

50
.5
9%

39
.2
0%

52
.6
5%

0.
08
%

0.
32
%

0.
30
%

0.
27
%

0.
58
%

24
.3
3%

23
.7
6%

24
.2
8%

32
.0
3%

26
.6
7%

Parent transactions received
Parent transactions in block
Orphan pool full

Timeout
Invalid orphan transaction
Peer disconnected

Figure 5·14: Fraction of orphan transactions that are removed from
the orphan pool due to each of the six causes across all nodes, under
different timeouts.

Figure 5·14 depicts the fraction of transactions removed from the orphan pool

for each of the six cases speciőed in Section 2.3 and different timeouts.

Increasing the timeout beyond the default of 20 minutes does not appear to de-

cidedly improve performance. Speciőcally, the faction of transactions for which the

parent transactions are recovered is 8.14% for the default timeout of 20 minutes,

5.81% for a timeout of 30 minutes, and 10.63% for a timeout of 60 minutes. On the

other hand, reducing the timeout degrades performance (i.e., 5.60% for a timeout of

15 minutes and 4.03% for a timeout of 10 minutes). Thus, the default timeout of

20 minutes appears appropriate.

5.3 Orphan transactions in nodes joining the network

A new node that joins the Bitcoin network has an empty mempool. Similarly, a node

that stays off the Bitcoin network for a long period has a stale mempool, meaning

129

that transactions in its mempool are not useful and are discarded when it rejoins the

network. This is primarily because such transactions are already included in blocks

that are created while the node is away from the network. In this section, we analyze

how an empty or stale mempool affects orphan transactions. We őrst describe our

experimental setup and then present results.

5.3.1 Measurement setup

We conőgure three nodes with the same identical hardware and software speciőcations

as described in Section 5.1.1 . The nodes are conőgured with the default orphan

pool size of 100 transactions and the default orphan transaction timeout of 20 minutes.

To emulate the behavior of a node that has just joined the Bitcoin network with an

empty or stale mempool, we clear the mempool of the nodes every 12 hours. The

experiment runs from July 6, 2020 3:00 PM EST for two weeks. That is, we collect

and present results obtained from data gathered over 84 sessions that are 12 hours

long.

5.3.2 Fraction of orphan transactions

We őrst measure the fraction of incoming transactions that become orphan. We divide

each of the 12 hour sessions into bins of 5-minute intervals. For each bin, we calculate

the fraction of transactions that became orphan among all incoming transactions.

Figure 5·15 shows, on an aggregate level, the fraction of transactions that

became orphan during each bin’s interval for the entire 12-hour session. We observe

that when a node starts up, a large fraction of transactions (i.e., above 25%) are added

to the orphan pool. As the nodes stay connected, the fraction of orphan transactions

drops, with occasional upward surges which can be attributed to the unsteady stream

of incoming transactions as shown in Figure 5·16 .

We note that a node has fewer peers when it starts up as compared to in steady-

130

0 1 2 3 4 5 6 7 8 9 10 11 12

Time t (h)

0

5

10

15

20

25

%
a
g
e
o
f
o
r
p
h
a
n
tr
a
n
sa
c
ti
o
n
s

Figure 5·15: Percentage of transactions that become orphan during
each 5-minute bin interval of the 12 hour long sessions.

state. Therefore, it receives a relatively smaller number of transactions at the begin-

ning, as shown in Figure 5·16 .

5.3.3 Arrival times of orphan transactions

We next analyze when during the measurement period orphan transactions are added

to the orphan pool. For this purpose, we characterize the arrival times of orphan

transactions (i.e., the time at which an incoming transaction is deemed orphan and

added to the orphan pool). The results are averaged over the 84 sessions, each of

which is 12 hours long.

Figure 5·17 shows, on an aggregate level, the CDF of the arrival times. We

observe that the majority of orphan transactions arrive soon after a node starts up.

Indeed, on average, roughly 50% of orphan transactions arrive within the őrst two

hours of the 12 hour measurement sessions.

131

0 1 2 3 4 5 6 7 8 9 10 11 12

Time t (h)

500

1000

1500

2000

2500

3000

3500
#

o
f
in
c
o
m
in
g
tr
a
n
sa
c
ti
o
n
s Maximum number of transactions

Average number of transactions
Minimum number of transactions

Figure 5·16: Maximum, average, and minimum number of transac-
tions received by nodes during each 5-minute bin interval of the 12 hour
long sessions aggregated over all 84 sessions. The differences between
the curves indicate that the number of incoming transactions varies
across sessions.

5.3.4 Removal of orphan transactions from orphan pool

Finally, we present an analysis of the causes of removal of transactions from the orphan

pool, after a node joins the network. We note from the previous section that a large

fraction of orphan transactions arrives within the őrst two hours. Hence, we zoom

into this time frame and examine how each of the six scenarios (see Section 2.3)

contributes to transactions being removed from the orphan pool.

Figure 5·18 shows, on an aggregate level, the fraction of transactions that are

removed from the orphan pool within the őrst two hours after a node joins the Bitcoin

network. By design, when a node boots up, its orphan pool is empty. Therefore, we

observe that immediately after a node joins the network, transactions are not removed

from the orphan pool because the pool becomes full. Instead, a larger fraction of

transactions is removed from the orphan pool because their missing parents are found.

132

0 2 4 6 8 10 12

Time t (h)

0.0

0.2

0.4

0.6

0.8

1.0
P
(
T
im

e
≤

t
)

Figure 5·17: CDF of arrival times of orphan transactions during mea-
surement periods. Roughly 50% of all orphan transactions are received
in the őrst two hours.

However, as the number of orphan transactions increases, the orphan pool őlls up and

evictions due to a full orphan pool become the leading reason for transactions being

removed from the orphan pool. The remaining őve causes contributes relatively little

to the eviction of transactions from the orphan pool. These őndings further conőrm

our earlier őndings that Bitcoin nodes ought to operate with a larger orphan pool size

to avoid unnecessary evictions and redundant network overhead (see Section 5.2.4).

5.4 Discussions and limitations

We next discuss our results and point out some of their limitations.

Propagation of parent transactions. Recall that an orphan transaction is not

propagated forward to other peers until all of its missing parents are found (cf. Sec-

tion 2.3). One might then ask: why are there orphan transactions at all? Should

not the peer that sent the orphan transaction to the measurement node have had

133

0 20 40 60 80 100 120

Time t (m)

0

20

40

60

80

100
O
r
p
h
a
n

T
X
s
r
e
m
o
v
e
d

(
%

) Parent transactions received
Parent transactions in block
Orphan pool full

Timeout
Invalid orphan transaction
Peer disconnected

Figure 5·18: Fraction of transactions that are removed from the or-
phan pool due to each of the six causes (see Section 2.3) over the
őrst two hours of the 12 hour long sessions.

the missing parents, or else it would not have forwarded the transaction to the mea-

surement node? Answering this question, there are several reasons why a transaction

forwarded by peers can end up in the orphan pool despite the peer having its missing

parents.

First, results presented in Section 5.3 show that a large fraction of transactions

that a node receives after joining the Bitcoin network become orphan. The peers

of this node do not know in advance what transactions the node already has and,

therefore, it is likely that the node will miss parents of transactions being announced

by its peers. Since many Bitcoin nodes experience churn [68,241], such scenarios are

quite common.

In addition, each node maintains its own minimum acceptable fee which is a

function of the node’s conőgured mempool size and the amount of memory available.

Any transaction received by the node that has a fee below this minimum is rejected

134

and is not added to the mempool and relayed to peers. A preliminary measurement

shows that some transactions that are rejected due to low fee end up as missing

parents of orphan transactions. We leave a detailed investigation to a future work.

Peer selection in measurement nodes. We focus on observing behavior of or-

phan transactions in regular, full Bitcoin nodes that participate in propagating infor-

mation in the network but do not mine blocks. Our nodes discover and connect to

peers on their own, similar to any regular, full Bitcoin node, so as not to introduce

any unwanted bias in our data.

Performance impact of orphan transactions. We learned from Section 5.3

that nodes receive most orphan transactions during the őrst few hours of connecting

to the network. As such, we can expect that a larger fraction of orphan transactions

will arrive within these őrst few hours. This larger initial incoming traffic can be

avoided by increasing the orphan pool size.

Ideas for future development. Our analysis shows that it is useful for nodes

to conőgure a larger orphan pool size in order to reduce unnecessary network over-

head. This may be especially beneőcial for nodes that rejoin the network after a long

downtime or that join the network for the őrst time.

Package Relay [249ś251] is a proposed feature currently under discussion in the

Bitcoin community. The goal of the feature is to package a transaction with all of

its ancestors currently present in a node’s mempool when relaying the transaction

forward to its peers. It may be valuable to study whether this feature also helps

reduce the number of transactions that become orphan.

135

5.5 Summary

The main results from the work presented in this chapter are summarized below.

• We have performed the őrst ever characterization of orphan transactions in the

Bitcoin network. Our analysis shows that contrary to natural conjecture, orphan

transactions, on average, have fewer parents than non-orphan transactions. The

parents of orphan transactions have
(

i
)

lower fees,
(

ii
)

larger size, and
(

iii
)

lower fee-per-byte as compared to parents of non-orphan transactions.

• We discover in an extensive analysis that 44.50% of orphan transactions received

by the measurement nodes appear in blocks received by the nodes. However,

only 11% of these were recovered before the node received the respective block

containing these transactions. In addition, 67.58% of the missing parents appear

in the same block as their orphan child transaction.

• We őnd that 50% of missing parents are received by measurements two hours

after the respective child transaction is added to the orphan pool. Indeed,

roughly 35% of missing parents are received after the mean difference of roughly

8 hours.

• We have documented the network and performance overhead incurred by orphan

transactions for orphan pools of various sizes, and varying default timeouts. We

őnd that increasing the orphan pool size from the default capacity of 100 to a

slightly higher size of 1,000 transactions signiőcantly reduces network overhead

while adding negligible performance overhead. On the other hand, increasing

the default timeout from the default of 20 minutes does not improve performance

whereas reducing the timeout value deteriorates performance.

• We have also studied the transient behavior of orphan transactions in nodes that

136

join the network for the őrst time or after a long downtime. These nodes do not

contain useful transactions in their mempools. We observer that roughly 25%

of the transactions received by the measurement nodes become orphan whereas

50% of these transactions are added to the orphan pool within the őrst two

hours of the node (re)joining the network and transactions being evicted from

the orphan pool due to it becoming full is the dominant cause for these two

hours.

It is apparent from results presented in this chapter that transactions becoming

orphan result in delays in their relay to peers of a Bitcoin node. Bitcoin users can

utilize the őndings from this chapter to appropriately set their own transaction fees

for relay of the corresponding transactions in the network. It should be beneőcial for

full nodes to conőgure their orphan pools with a size slightly larger than the default to

reduce unnecessary network overhead. This should be especially useful for churning

nodes who rejoin the network after a long downtime.

137

Chapter 6

Conclusions and future work

In this thesis, we studied the occurrence and impacts of natural phenomena in popular

blockchain systems namely Bitcoin and Bitcoin Cash. We showed that effects of such

phenomena can be detrimental to the performance of the blockchain systems and

proposed novel solutions to tackle these unfavorable effects.

Our main contributions are as follows: we őrst devise a framework to help study

information related to events that occur in a blockchain system. Next, with the help

of this framework, we examined
(

i
)

the effects of churn on the relay of blocks in the

Bitcoin protocol,
(

ii
)

the performance of different block relay protocols implemented

in the Bitcoin Cash network under realistic network conditions,
(

iii
)

the characteris-

tics of orphan transactions in the Bitcoin network and the overhead imposed by them

whilst using the default parameters, and
(

iv
)

the impact of churn on transactions

received by Bitcoin nodes becoming orphan. Finally, we
(

i
)

proposed, implemented,

and evaluated a novel synchronization scheme and demonstrated its usefulness in mit-

igating the detrimental effects of churn on the Bitcoin system, and
(

ii
)

showed that

the overhead caused by frequent eviction of orphan transactions from the orphan pool

can be signiőcantly reduced by slightly increasing the size of the pool.

In the rest of this section, we summarize our results and discuss potential future

work directions.

138

Summary of contributions and findings

We summarize our contributions and őndings from this thesis below.

Churn in the Bitcoin Network. In Chapter 3 , we identiőed and empirically

demonstrated the heretofore undocumented effect of churn on the Bitcoin network.

We performed a thorough characterization of churn, including the daily churn rate

and statistical őtting of the distributions of the lengths of up and down sessions. This

statistical characterization should prove useful to other researchers, for the purpose

of analyzing, simulating, and emulating the behavior of the Bitcoin network.

We also used the statistical characterization to evaluate the impact of churn on the

propagation delay of blocks in the live Bitcoin network. In the process of this research,

we developed a logging mechanism for tracing events in Bitcoin nodes, which we have

released for public use [121]. Our experiments showed that churn produces a marked

degradation in the performance of the delay-optimized compact block protocol. This

is because unsuccessful compact blocks are much more prevalent in churning nodes,

and the associated incomplete blocks often miss a large number of transactions (78.08

on average). As a result, the propagation delay of blocks processed by churning nodes

is substantially larger, on average, than that of nodes that are always connected. In

fact, occurrences of propagation delays that exceed one second are common. Our

measurements show that more than 6% of the blocks processed by the churning nodes

have a propagation delay exceeding one second, compared to less than 1% of the blocks

processed by the control nodes. Note that this corresponds to the delay over a single

hop on the Bitcoin network, and hence the end-to-end delay would be even larger.

We have also proposed and implemented into Bitcoin Core a proof-of-concept

synchronization scheme, MempoolSync, that sends transactions to peers in an effort

to alleviate the impact of churn and keep mempools of nodes synchronized. Our

139

experimental results show that churning nodes that accept MempoolSync messages

are able to successfully reconstruct, on average, a larger fraction of compact blocks

that they receive as compared to churning nodes that do not accept such messages.

This happens because the former miss far fewer transactions (about 3 times less on

average) from the compact blocks that they receive. As a result, the churning nodes

that accept MempoolSync messages experience block propagation delay that is, on

average, slightly less than half the propagation delay of churning nodes that do not

accept such messages.

Comparison of block relay protocols. We have studied the empirical perfor-

mance of three popular block relay protocols (Graphene, compact blocks, and the

Bitcoin default) on a live blockchain through the Bitcoin Unlimited (BU) client in

a variety of network regimes and presented our őndings in Chapter 4 . In our

experiments on nodes that are in the always on and statistical churn regimes,

the Graphene block relay protocol performed best and the Bitcoin default block re-

lay protocol performed the worst in terms of average block communication sizes and

propagation delays: compared to Graphene, compact and default blocks have roughly

40% and 500% higher propagation delays, and over 80% and 150% larger communi-

cation sizes. As a result, it seems preferable to conőgure nodes with the Graphene

block relay protocol under typical network conditions.

We have also studied the effects of periodic churn on the performance of the

block relay protocols. We ran two sets of experiments (at 25% and 75% off-duty

cycles respectively) on nodes, whose connectivity ŕuctuated in periods of 20 m, 1 h,

3 h, and 6 h. We found that the default block relay protocol performed worse than

Graphene and compact blocks, in terms of propagation delay and communication

sizes, regardless of the off duty cycle. Graphene generally performed better than

compact blocks in the 25% off-duty cycle, and vice versa in the 75% regime. More

140

precisely, Graphene performance signiőcantly degrades when the destination misses

many transactions as this causes additional rounds of communication. As a result,

if nodes churn frequently or are off the network for long periods of time, it may be

preferable to conőgure them with the compact block protocol.

We further conducted a temporal analysis of the Graphene block relay to identify

which decoding scenario typically prevails. In particular, we found out that scenario

③ of the protocol occurs infrequently. This result suggests that the block failure

recovery procedure in the protocol could be further optimized to avoid unnecessary

rounds of communication required to recover missing transactions should scenario

④ occur. For example, it may be beneőcial to send hashes of transactions when

initiating failure recovery instead of encoding them in a Bloom őlter so that there

is no chance of false positives. Doing so should only add negligible overhead since

scenarios including failure recovery occur infrequently.

Finally, we studied the beneőt of including additional transactions in the initial

message of the compact block relay protocol. These are full transactions predicted by

the SRC node to be missing from the mempool of the DST node. Our analysis shows

that in our experimental nodes in both always on and statistical churn regimes,

a large portion of the cmpctblock messages only contain the coinbase transaction.

Of the remaining portion of the cmpctblock messages, over 90% of the additional

transactions result in wasted bandwidth. It may, therefore, be interesting to evaluate

whether excluding additional transactions from the cmpctblock messages has greater

beneőts.

Orphan transactions in the Bitcoin network. We have investigated circum-

stances under which a Bitcoin transaction is orphaned in Chapter 5 . Our data

shows that orphan transactions have, on average, fewer parents than other transac-

tions. The parents that cause transactions to become orphaned also have a lower

141

transaction fee and a larger size relative to all received transactions. On an indi-

vidual level, the missing parents also have, on average, a lower transaction fee per

byte as compared to parents of all received transactions. This information can be

utilized by Bitcoin users to appropriately set their own transaction fees and facilitate

propagation through the network.

We have also documented the network and performance overhead incurred by

orphan transactions for orphan pools of varying sizes. Our analysis reveals that

as the orphan pool size grows, more transactions are removed from the pool, not

because the pool is full but because the transactions timeout. This in turn reduces

the duplicate addition of transactions to the orphan pool, resulting in a much smaller

network overhead. Our evaluations show that the performance overhead incurred by

a larger orphan pool is insigniőcant, and it is thus advisable to set a larger orphan

pool of larger size. On the other hand, changing the orphan transaction timeout from

the default of 20 minutes does not appear to help. Indeed, increasing the default

orphan transaction timeout does not decidedly improve performance, and reducing

the timeout degrades performance.

We have also investigated the transient behavior of orphan transactions in nodes

that join the network for the őrst time or after a long downtime (i.e., they do not

contain useful transactions in their mempools). Our analysis shows that immediately

after a node joins the network, on average, over 25% of the received transactions

become orphans. Furthermore, over the measurement period, a large fraction of the

orphan transactions, i.e., roughly 50%, are added to the orphan pool during the

őrst two hours. We also observe that, when a node őrst starts up with an empty

orphan pool, most transactions are removed from the orphan pool due to reception

of their missing parents. However, after a few minutes, an overŕow of the orphan

pool becomes the primary cause for the removal of orphan transactions. This őnding

142

further conőrms the inadequacy of the default orphan pool size that is limited to 100

transactions.

Future work directions

Finally, we discuss potential venues for future research based on the work presented

in this thesis.

Churn in different blockchain systems. In this thesis, we have shown the ex-

istence and impact of churn on the Bitcoin network. We believe our methodology to

accomplish this can be extended to other blockchains to study the effects of churn

on the respective systems. Doing so should provide a large enough data set which

provides insights into designing churn-tolerant block relay protocols to blockchain

developers.

Churn in layer-2 solutions. The problem of scalability is widespread in the

blockchain ecosystem. To tackle this challenge, layer-2 solutions, which are net-

works or technologies built on top of an underlying blockchain protocol, have been

proposed and implemented for different blockchains [252ś254]. In the lightning net-

work [252], for example, two parties can open an off-chain private channel between

themselves by locking a certain amount of funds to the Bitcoin network. The parties

can then transfer funds between themselves via the private channel without the need

to record each transfer to the main blockchain. Their balances are only updated on

the main blockchain when they close the private channel between them. Since the

parties do not congest the main blockchain with each transfer record, the lightning

network can signiőcantly improve the transaction throughput of the Bitcoin network

thus improving the scalability of the protocol. A security threat to layer-2 solutions

appears when participating parties churn and go offline: they become vulnerable to

143

an adversary since they are no longer synchronized with the payment channel network

(PCN) [255] and the blockchain [256]. A study on how churn affects layer-2 solutions

and methods to mitigate such effects should be valuable.

Implementation of Graphene in other blockchains. The results of this the-

sis indicate that the Graphene block relay protocol should be of interest to other

blockchains, including BTC, the main Bitcoin blockchain. Integrating and evaluating

this protocol within Bitcoin Core, the client software for the Bitcoin protocol, appears

to be an effort worth investing.

Extended comparison of block relay protocols. We have presented a compar-

ison of performance of three different block relay protocols in this thesis. It should

be interesting to identify if there exist better block relay protocols and how they

compare against the ones presented in our work. For example, Velocity [61] aims to

improve the propagation of blocks through rateless erasure coding. However, as noted

in Chapter 1 , this protocol is only evaluated via simulations. It is also not clear

how Velocity performs compared to other block relay protocols such as the Graphene

block relay protocol under realistic network conditions.

Blockchain-wide implementation of mempool synchronization. As an out-

come of the work presented in this thesis, it is evident that there is signiőcant beneőt

in implementing efficient synchronization of the mempools of Bitcoin nodes, thus

keeping them up-to-date with transactions that they might have missed while be-

ing disconnected. Indeed, our analysis of MempoolSync in Section 3.3 shows that

churning nodes that synchronize their mempools with highly-connected nodes have

fewer block decode failures and smaller increases in block propagation delays. It

should, therefore, be beneőcial to study how mempool synchronization schemes per-

144

form across different blockchains.

Detailed investigation related to orphan transactions. Our őndings in this

thesis show that missing parents are sometimes found many hours after their child

transaction became orphan. We conjecture that this large delay may be caused by

the Replace-by-Fee (RBF) feature [165] of Bitcoin. Another important őnding is that

in many cases, one or more missing parents are included in the same block as the

orphan transaction. Since orphan transactions are not propagated, this may slow

down the block propagation process (due to potential failure of compact blocks [68,

241]). Detailed investigation of these phenomena represent interesting areas for future

work.

Concluding remarks

This thesis makes signiőcant contributions towards facilitating in situ measurements

in full nodes and discovering the impact of natural phenomena in the Bitcoin and

Bitcoin Cash networks through empirical methods, and proposes novel solutions to

provably mitigate those impacts. The techniques discussed in the thesis can be em-

ployed in other blockchain systems which opens several venues for future research.

145

Appendix A

Explanation of log-to-file system

We designed and implemented the log-to-file system in Bitcoin Core and Bitcoin

Unlimited to facilitate empirical measurements of different events in the underly-

ing protocols. In this section, we explain the motivation behind and the challenges

faced when designing the system, the design of the system, demonstrate its usage

in different scenarios, and show how useful data can be extracted from the respec-

tive logs generated. All őle paths in this section are relative to the directory at

https://github.com/nislab/bitcoin-releases/tree/wip/src/.

A.1 Motivation and challenges

To the best of our knowledge, existing tools that facilitate extraction of data from

blockchains are either not publicly available, or are limited in scope of what they can

measure. For example, such tools cannot measure the impact of phenomena such as

churn of full nodes and orphan transactions on the corresponding blockchain system.

To this end, we have designed and implemented a measurement tool dubbed as the

log-to-file system in the Bitcoin Core and Bitcoin Unlimited software for the purpose

of data collection in-situ.

We studied the Bitcoin Core and Bitcoin Unlimited software implementations and

identiőed events of interest such as reception of blocks and transactions, addition of

transactions to the orphan pool, and so on, with the help of the Bitcoin protocol

https://github.com/nislab/bitcoin-releases/tree/wip/src/

Receive block
announcement

Request default
block

Receive default
block

Process default
block

Figure A·1: State transitions for the default block relay protocol from
the perspective of a receiver.

Receive block
announcement

Request compact
block

Receive compact
block

No missing
transactions

Missing
transactions

Request missing
transactions

Receive missing
transactions

Process
compact block

Figure A·2: State transitions for the compact block relay protocol
from the perspective of a receiver.

documentation [181]. This process requires a signiőcant effort in itself. To put it

into perspective, recall the default block relay protocol (explained in more detail in

Section 2.2.4) which is quite simple. A peer of the Bitcoin node announces the

block which the node requests and upon receiving the block, processes it and relays

it to other peers. The transitions in these states are illustrated in Figure A·1 . The

compact block relay protocol (explained in more detail in Section 2.2.4) is slightly

more complex than the default block relay protocol as illustrated in Figure A·2 .

Now there can also be transactions missing from the mempool of the node when a

compact block is received and the node would need to request missing transactions

to be able to reconstruct the block and relay it to peers. The Graphene block relay

protocol (explained in more detail in Section 2.2.4) is much more complex since

there can now be IBLT decode failures in addition to missing transactions. A node

may need to perform failure recovery and even then can have transactions missing

from its mempool. Figure A·3 illustrates the complexity of the protocol. The

process is similar for orphan transactions.

Once an event of interest is identiőed, we insert hooks into the corresponding place

in the software via the methods exposed by the log-to-őle system (explained in more

146

Receive block
announcement

Request
Graphene block

Receive
Graphene block

Graphene block
decode fail

Graphene block
decode success

Missing
transactions

Request missing
transactions

No missing
transactions

Graphene block
reconstruction
success

Request failure
recovery

Failure recov-
ery response
received

Failure recovery
decode success

Failure recovery
decode fail

Request failover
Missing transac-
tions after fail-
ure recovery

Process
Graphene block

Request missing
transactions af-
ter failure recov-
ery

Recovering miss-
ing transactions
failed

Missing transac-
tions received

Still missing
transactions

All missing
transactions
found

Bad merkle root

Graphene block
reconstruction
fail

Graphene block
reconstruction
successful after
recovering miss-
ing transactions

Graphene block
reconstruction
failed after re-
covering missing
transactions

Graphene block
reconstruction
failed after fail-
ure recovery

Graphene block
reconstruction
successful after
failure recovery

Figure A·3: State transitions for the Graphene block relay protocol
from the perspective of a receiver. States with backgrounds in green ,

purple , yellow , cyan , and red occur in scenarios ①, ②, ③, ④,

and ⑤, respectively (see Listing 3). A state with multiple back-
ground colors represents more than one corresponding scenarios that
transition through it.

147

detail in Appendix A.2). The hooks are triggered when an event of interest occurs

and relevant data is recorded to őles which can then be post processed to obtain

results and insights.

A.2 Design of the system

Similar to Bitcoin Core and Bitcoin Unlimited, the current version of the log-to-őle

system is implemented entirely in the C++ programming language though it can be

ported quite easily to other languages. The system primarily consists of a header

őle, i.e., logFile.h, and a source őle, i.e., logFile.cpp. The header őle exposes

the logFile(...) method which is overloaded to cover various scenarios along with

several other utility functions. The source őle provides an implementation of these

functions which can be modiőed based on the users’ needs. We demonstrate the usage

of some of these functions in Appendix A.3 .

The logging capability is enabled by adding the logFile.* őles to the make

system of Bitcoin Core and Bitcoin Unlimited. Speciőcally, logFile.h must be

added to the BITCOIN_CORE_H variable1,2 and logFile.cpp must be added to the

libbitcoin_server_a_SOURCES3,4 variable in Makefile.am5. Doing so compiles the

source őle along with the rest of the Bitcoin software and creates a binary (i.e.,

bitcoind or bitcoin-qt) which creates the log őles when executed.

A.3 Usage of the system

Before any logs can be generated, the log-to-őle system must be initialized using

the initLogger function6 which creates the directory structure required to store

relevant log őles. For example, this can be done when the Bitcoin software itself is

1Makefile.am#L112
2Makefile.am#L255
3Makefile.am#L267

4Makefile.am#L344
5Makefile.am
6logFile.h#L80

148

https://github.com/nislab/bitcoin-releases/tree/wip/src/Makefile.am#L112
https://github.com/nislab/bitcoin-releases/tree/wip/src/Makefile.am#L255
https://github.com/nislab/bitcoin-releases/tree/wip/src/Makefile.am#L267
https://github.com/nislab/bitcoin-releases/tree/wip/src/Makefile.am#L344
https://github.com/nislab/bitcoin-releases/tree/wip/src/Makefile.am
https://github.com/nislab/bitcoin-releases/tree/wip/src/logFile.h#L80

initializing by placing a call to the function in init.cpp7. Once the log-to-őle system

is successfully initialized, it can now be used to log information to őles. This can

be achieved by including the header őle, i.e., #include <logFile.h>, in appropriate

source őles where logging is required.

We now show illustrations for some events for which we generate logs. For the sake

of privacy, we replace all IP addresses found in our log őle with aaa.bbb.ccc.ddd.

Block transfer. The őrst step in the relay of a block is the announcement of its

header from a peer of the measurement node. This announcement is logged by adding

the following line to net_processing.cpp8:

logFile("BLCKHEADERRECV -- block header " + pindex ->GetBlockHash ().

ToString () + " received from " + pfrom ->GetLogName ());

A record is appended to the log őle which contains
(

i
)

both a human-readable

and Unix timestamp at which the header announcement is received,
(

ii
)

the hash

of the block for which the header is announced, and
(

iii
)

the IP address of the peer

who sent the announcement as illustrated below. Note that the node may log several

records for the announcement of the same block from different peers since it may be

connected to many of them.

Wed Nov 10 23:10:40 2021 1636603840938450302 : BLCKHEADERRECV --

block header 0000000000000000037

b7fbb0900936afa0be70982637bbff240f840230b765d received from aaa.

bbb.ccc.ddd :8333 (27)

Next, the node checks whether it already knows of this block. In the case that it

does not, it sends a request for the block depending on the block relay protocol sup-

ported by the node. We only show an illustration for the Graphene block. The request

7init.cpp#L1712
8net_processing.cpp#L1565

149

https://github.com/nislab/bitcoin-releases/tree/wip/src/init.cpp#L1712
https://github.com/nislab/bitcoin-releases/tree/wip/src/net_processing.cpp#L1565

sent to the peer is logged by adding the following line to requestManager.cpp9:

logFile("GRPHNBLCKREQSENT -- graphene block " + obj.hash.ToString ()

+ " request of size " + std:: to_string (:: GetSerializeSize(ss ,

SER_NETWORK , PROTOCOL_VERSION)) + " (bytes), mempool size " + std

:: to_string(receiverMemPoolInfo.nTx) + " txs sent to peer " +

pfrom ->GetLogName ());

The record appended to the log őle contains
(

i
)

the hash of the block being

requested from the peer,
(

ii
)

the size (in bytes) of the request sent to the peer,
(

iii
)

the number of transactions in the mempool of the node which is conveyed to the peer

(see Section 2.2.4), and
(

iv
)

the IP address of the peer to whom the request is

sent. An illustration of the record is shown below.

Wed Nov 10 23:10:41 2021 1636603841049165810 : GRPHNBLCKREQSENT --

graphene block 0000000000000000037

b7fbb0900936afa0be70982637bbff240f840230b765d request of size 44

(bytes), mempool size 1232 txs sent to peer aaa.bbb.ccc.ddd :8333

(27)

The peer now sends the block back to the measurement node. Information about

this block is logged by adding the following line to graphene.cpp10:

logFile("GRPHNBLCKRECV -- received graphene block " + pblock ->

grapheneblock ->header.GetHash ().ToString () + " of size " + std::

to_string(pblock ->grapheneblock ->GetSize ()) + " (bytes), BFPR = "

+ std:: to_string(pblock ->grapheneblock ->fpr) + ", a = " + std::

to_string(pblock ->grapheneblock ->pGrapheneSet ->GetIblt ()->

GetHashTableSize ()) + " from " + pfrom ->GetLogName ());

The record associated with this information contains
(

i
)

the hash of the block

received from the peer,
(

ii
)

the size (in bytes) of the received block,
(

iii
)

some

information about the data structures that make up the block, such as the Bloom

9requestManager.cpp#L577 10blockrelay/graphene.cpp#L619

150

https://github.com/nislab/bitcoin-releases/tree/wip/src/requestManager.cpp#L577
https://github.com/nislab/bitcoin-releases/tree/wip/src/blockrelay/graphene.cpp#L619

őlter false positive rate, and the number of cells in the IBLT (see Section 2.2.3),

and
(

iv
)

the IP address of the peer who sent the block as illustrated below.

Wed Nov 10 23:10:41 2021 1636603841079562036 : GRPHNBLCKRECV --

received graphene block 0000000000000000037

b7fbb0900936afa0be70982637bbff240f840230b765d of size 5056 (bytes

), BFPR = 0.050542 , a = 264 from aaa.bbb.ccc.ddd :8333 (27)

In addition, the state of the mempool is dumped when a block is received for

further analysis by adding the following line to blockrelay/graphene.cpp11:

logFile("mempool", pblock ->grapheneblock ->header.GetHash ().ToString

());

Hashes of transactions in the mempool are dumped to a őle associated with the

hash of the block. A truncated illustration of the őle is shown below.

...

01 a879cfffe354ad5299161b872605fab70e3d1c1eec9a75a4514cdbf9e8f4d5

0205982 a800558009d14aa5fba9b8d2deed386624db6d9be6c0dffe98ae785ed

0208878 bdc9fbf1ad8d29b444bd5b6b790c3993a0fd1b11494c00ef5727f50a7

02205070 ca32d5983e041adbe1e5754fd07bd0ca5fd5b05479436254c30e4b41

0222 c36fdc3bc03fb42c5334541502065e7f3fe8fabfb87695e51fc9903d049b

...

Block decode. Next, the node attempts to decode the block upon receiving it which

can either succeed or fail. Failure in decoding of the Graphene block is recorded by

adding the following line in blockrelay/graphene.cpp12:

logFile("GRPHNDECODEFAIL -- graphene decode failed; starting failure

recovery: " + pblock ->grapheneblock ->header.GetHash ().ToString ()

+ " from " + pfrom ->GetLogName ());

11blockrelay/graphene.cpp#L620 12blockrelay/graphene.cpp#L705

151

https://github.com/nislab/bitcoin-releases/tree/wip/src/blockrelay/graphene.cpp#L620
https://github.com/nislab/bitcoin-releases/tree/wip/src/blockrelay/graphene.cpp#L705

In addition, the cause for the block decode is also logged by adding the following

lines in blockrelay/graphene.cpp13:

logFile("GRPHNBLCKIBLTPEELFAIL -- IBLT peeling failed for block " +

pblock ->grapheneblock ->header.GetHash ().ToString () + " from " +

pfrom ->GetLogName ());

and14:

logFile("GRPHNBLCKIBLTRECONFAIL -- " + std:: string(e.what()) + " for

block " + pblock ->grapheneblock ->header.GetHash ().ToString () + "

from " + pfrom ->GetLogName ());

Appropriate records containing the hash of the block and the cause of decode

failure are then appended to the log őles as illustrated below.

Fri Nov 12 02:44:06 2021 1636703046550497610 : GRPHNDECODEFAIL --

graphene decode failed; starting failure recovery:

00000000000000000017 ec62b690ceeee1cac9623aa6b49aa4c724bb72dc47fb

from aaa.bbb.ccc.ddd :50090 (1957)

Fri Nov 12 02:44:06 2021 1636703046550656520 : GRPHNBLCKIBLTPEELFAIL

-- IBLT peeling failed for block 00000000000000000017

ec62b690ceeee1cac9623aa6b49aa4c724bb72dc47fb from aaa.bbb.ccc.ddd

:50090 (1957)

Similarly, success in decoding of the Graphene block is recorded by adding the

following line in blockrelay/graphene.cpp15:

logFile("GRPHNDECODESCCS -- graphene decode successful: " + pblock ->

grapheneblock ->header.GetHash ().ToString () + " from " + pfrom ->

GetLogName ());

This appends a record to the log őle containing the hash of the block which is

successfully decoded as illustrated below.

13blockrelay/graphene.cpp#L707
14blockrelay/graphene.cpp#L709

15blockrelay/graphene.cpp#L725

152

https://github.com/nislab/bitcoin-releases/tree/wip/src/blockrelay/graphene.cpp#L707
https://github.com/nislab/bitcoin-releases/tree/wip/src/blockrelay/graphene.cpp#L709
https://github.com/nislab/bitcoin-releases/tree/wip/src/blockrelay/graphene.cpp#L725

Wed Nov 10 23:10:41 2021 1636603841085376365 : GRPHNDECODESCCS --

graphene decode successful: 0000000000000000037

b7fbb0900936afa0be70982637bbff240f840230b765d from aaa.bbb.ccc.

ddd :8333 (27)

Block reconstruction. Once the block is successfully decoded, the node attempts

to reconstruct the block the result of which is logged. For example, successful block re-

construction is recorded by adding the following line in blockrelay/graphene.cpp16:

logFile("GRPHNBLCKRECONSCCS -- graphene block reconstruction success

: " + pblock ->grapheneblock ->header.GetHash ().ToString () + " from

" + pfrom ->GetLogName ());

This appends a record to the log őle which contains the hash of the successfully

reconstructed block as illustrated below.

Wed Nov 10 23:10:41 2021 1636603841034258350 : GRPHNBLCKRECONSCCS --

grahene block reconstruction success: 0000000000000000037

b7fbb0900936afa0be70982637bbff240f840230b765d from aaa.bbb.ccc.

ddd :8333 (4)

The block is then processed which is logged by adding the following line to

parallel.cpp17:

logFile("GRPHNBLCKRECONFIN -- processed block " + inv.hash.ToString

() + " from " + pfrom ->GetLogName ());

A record is appended to the log őle including
(

i
)

the timestamp when block

processing is őnished, and
(

ii
)

the hash of the block that is processed as illustrated

below.

16blockrelay/graphene.cpp#L744
17parallel.cpp#L643

153

https://github.com/nislab/bitcoin-releases/tree/wip/src/blockrelay/graphene.cpp#L744
https://github.com/nislab/bitcoin-releases/tree/wip/src/parallel.cpp#L643

Wed Nov 10 23:10:41 2021 1636603841074956879 : GRPHNBLCKRECONFIN --

processed block 0000000000000000037

b7fbb0900936afa0be70982637bbff240f840230b765d from aaa.bbb.ccc.

ddd :8333 (4)

Furthermore, hashes of all transactions in the processed block are dumped to a

őle for further analysis by adding the following line to parallel.cpp18:

logFile(pblock ->vtx , inv.hash.ToString (), pfrom ->GetLogName (),

BlockType :: GRAPHENE);

A őle named after the hash of the block is created containing the hashes of the

transactions in the block as illustrated below.

8e4793a92212b89a2a4ac2d17bd24d7d897a220e427158e2d0013afe9f764ec5

0013175 c7bc284a841905029b33dd4731ae83ed290ab72fd913533a473296c94

003514 d864862bdf756934cb03ff20c87431249714cd9b520d4445320647563b

0054 e6396911d7d3f4c13b8fc929e308599763c9b72a3db8ba081945b96bdd9a

00 fb4c991bec86ea93e98e06e6ed9bf335e0891453ea88fe58a9a06cc7983eb9

...

18parallel.cpp#L644

154

https://github.com/nislab/bitcoin-releases/tree/wip/src/parallel.cpp#L644

Bibliography

[1] S. Nakamoto, łBitcoin: A peer-to-peer electronic cash system.ž
https://bitcoin.org/bitcoin.pdf, 2008. Online; Accessed: Nov 27, 2021.

[2] V. Buterin et al., łA next-generation smart contract and decentralized
application platform.ž https://blockchainlab.com/pdf/Ethereum_white_p

aper-a_next_generation_smart_contract_and_decentralized_applicati

on_platform-vitalik-buterin.pdf, 2014. Online; Accessed: Nov 27, 2021.

[3] V. Buterin et al., łEthereum Whitepaper.ž
https://ethereum.org/en/whitepaper/. Online; Accessed: Nov 9, 2021.

[4] łWhy Cardano.ž https://why.cardano.org/. Online; Accessed: Nov 9, 2021.

[5] łThe Future of CBDCs: Why All Central Banks Must Take Action.ž https:

//ripple.com/wp-content/uploads/2021/01/cbdc-whitepaper-2020.pdf.
Online; Accessed: Nov 9, 2021.

[6] łTether: Fiat currencies on the Bitcoin blockchain.ž https:

//tether.to/wp-content/uploads/2016/06/TetherWhitePaper.pdf.
Online; Accessed: Nov 9, 2021.

[7] S. Saberi, M. Kouhizadeh, J. Sarkis, and L. Shen, łBlockchain technology and
its relationships to sustainable supply chain management,ž International
Journal of Production Research, vol. 57, no. 7, pp. 2117ś2135, 2019.

[8] R. Casado-Vara, J. Prieto, F. D. la Prieta, and J. M. Corchado, łHow
blockchain improves the supply chain: case study alimentary supply chain,ž
Procedia Computer Science, vol. 134, pp. 393ś398, 2018. The 15th
International Conference on Mobile Systems and Pervasive Computing
(MobiSPC 2018) / The 13th International Conference on Future Networks
and Communications (FNC-2018) / Affiliated Workshops.

[9] S. A. Abeyratne and R. Monfared, łBlockchain ready manufacturing supply
chain using distributed ledger,ž International Journal of Research in
Engineering and Technology, vol. 05, no. 09, pp. 1ś10, 2016.

[10] K. Francisco and D. Swanson, łThe Supply Chain Has No Clothes:
Technology Adoption of Blockchain for Supply Chain Transparency,ž
Logistics, vol. 2, no. 1, 2018.

155

https://bitcoin.org/bitcoin.pdf
https://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
https://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
https://blockchainlab.com/pdf/Ethereum_white_paper-a_next_generation_smart_contract_and_decentralized_application_platform-vitalik-buterin.pdf
https://ethereum.org/en/whitepaper/
https://why.cardano.org/
https://ripple.com/wp-content/uploads/2021/01/cbdc-whitepaper-2020.pdf
https://ripple.com/wp-content/uploads/2021/01/cbdc-whitepaper-2020.pdf
https://tether.to/wp-content/uploads/2016/06/TetherWhitePaper.pdf
https://tether.to/wp-content/uploads/2016/06/TetherWhitePaper.pdf

[11] M. Mettler, łBlockchain technology in healthcare: The revolution starts here,ž
in 2016 IEEE 18th International Conference on e-Health Networking,
Applications and Services (Healthcom), pp. 1ś3, 2016.

[12] C. C. Agbo, Q. H. Mahmoud, and J. M. Eklund, łBlockchain Technology in
Healthcare: A Systematic Review,ž Healthcare, vol. 7, no. 2, 2019.

[13] E. J. De Aguiar, B. S. Faiçal, B. Krishnamachari, and J. Ueyama, łA Survey
of Blockchain-Based Strategies for Healthcare,ž ACM Computing Surveys,
vol. 53, Mar. 2020.

[14] W. J. Gordon and C. Catalini, łBlockchain Technology for Healthcare:
Facilitating the Transition to Patient-Driven Interoperability,ž Computational
and Structural Biotechnology Journal, vol. 16, pp. 224ś230, 2018.

[15] A. Reyna, C. Martín, J. Chen, E. Soler, and M. Díaz, łOn blockchain and its
integration with IoT. Challenges and opportunities,ž Future Generation
Computer Systems, vol. 88, pp. 173ś190, 2018.

[16] X. Fan and Q. Chai, łRoll-DPoS: A Randomized Delegated Proof of Stake
Scheme for Scalable Blockchain-Based Internet of Things Systems,ž in
Proceedings of the 15th EAI International Conference on Mobile and
Ubiquitous Systems: Computing, Networking and Services, MobiQuitous ’18,
(New York, NY, USA), p. 482ś484, Association for Computing Machinery,
2018.

[17] S. Huh, S. Cho, and S. Kim, łManaging IoT devices using blockchain
platform,ž in 2017 19th International Conference on Advanced
Communication Technology (ICACT), pp. 464ś467, 2017.

[18] A. Dorri, S. S. Kanhere, and R. Jurdak, łTowards an Optimized BlockChain
for IoT,ž in 2017 IEEE/ACM Second International Conference on
Internet-of-Things Design and Implementation (IoTDI), pp. 173ś178, 2017.

[19] M. Samaniego, U. Jamsrandorj, and R. Deters, łBlockchain as a Service for
IoT,ž in 2016 IEEE International Conference on Internet of Things (iThings)
and IEEE Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData), pp. 433ś436, 2016.

[20] O. Novo, łBlockchain Meets IoT: An Architecture for Scalable Access
Management in IoT,ž IEEE Internet of Things Journal, vol. 5, no. 2,
pp. 1184ś1195, 2018.

156

[21] A. A. Monrat, O. Schelén, and K. Andersson, łA Survey of Blockchain From
the Perspectives of Applications, Challenges, and Opportunities,ž IEEE
Access, vol. 7, pp. 117134ś117151, 2019.

[22] U. Srinivas Aditya, R. Singh, P. K. Singh, and A. Kalla, łA Survey on
Blockchain in Robotics: Issues, Opportunities, Challenges and Future
Directions,ž Journal of Network and Computer Applications, vol. 196,
p. 103245, 2021.

[23] T. Hewa, M. Ylianttila, and M. Liyanage, łSurvey on blockchain based smart
contracts: Applications, opportunities and challenges,ž Journal of Network
and Computer Applications, vol. 177, p. 102857, 2021.

[24] D. Di Francesco Maesa and P. Mori, łBlockchain 3.0 applications survey,ž
Journal of Parallel and Distributed Computing, vol. 138, pp. 99ś114, 2020.

[25] F. Antonucci, S. Figorilli, C. Costa, F. Pallottino, L. Raso, and P. Menesatti,
łA review on blockchain applications in the agri-food sector,ž Journal of the
Science of Food and Agriculture, vol. 99, no. 14, pp. 6129ś6138, 2019.

[26] M. Pincheira, M. Vecchio, R. Giaffreda, and S. S. Kanhere, łExploiting
constrained IoT devices in a trustless blockchain-based water management
system,ž in 2020 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC), pp. 1ś7, 2020.

[27] N. Bore, A. Kinai, P. Waweru, I. Wambugu, J. Mutahi, E. Kemunto,
R. Bryant, and K. Weldemariam, łAGWS: Blockchain-enabled Small-scale
Farm Digitization,ž in 2020 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC), pp. 1ś9, 2020.

[28] J. Abou Jaoude and R. George Saade, łBlockchain Applications ś Usage in
Different Domains,ž IEEE Access, vol. 7, pp. 45360ś45381, 2019.

[29] łBitcoin’s kryptonite: The 51% attack..ž
https://bitcointalk.org/index.php?topic=12435.0. Online; Accessed:
Aug 24, 2020.

[30] S. M. H. Bamakan, A. Motavali, and A. Babaei Bondarti, łA survey of
blockchain consensus algorithms performance evaluation criteria,ž Expert
Systems with Applications, vol. 154, p. 113385, 2020.

[31] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, łLSB: A Lightweight
Scalable Blockchain for IoT security and anonymity,ž Journal of Parallel and
Distributed Computing, vol. 134, pp. 180ś197, 2019.

157

https://bitcointalk.org/index.php?topic=12435.0

[32] łGlobal Cryptocurrency Adoption Doubled Since Jan.ž
https://blog.crypto.com/global-crypto-users-over-200-million/, Jul
2021. Online; Accessed: Dec 20, 2021.

[33] R. Branson. https:
//twitter.com/richardbranson/status/403884094397759489?s=20, Nov
2013. Online; Accessed: Dec 20, 2021.

[34] łAT&T is the First Mobile Carrier to Accept Payment in Cryptocurrency.ž
https://about.att.com/story/2019/att_bitpay.html, May 2019. Online;
Accessed: Dec 20, 2021.

[35] łBITCOIN ACCEPTED.ž
https://promotions.newegg.com/nepro/16-6277/index.html. Online;
Accessed: Dec 20, 2021.

[36] CoinMarketCap, łBitcoin price today, BTC live marketcap, chart, and info.ž
https://coinmarketcap.com/currencies/bitcoin/. Online; Accessed: Nov
9, 2021.

[37] CoinMarketCap, łGlobal cryptocurrency market charts.ž
https://coinmarketcap.com/charts/. Online; Accessed: Nov 10, 2021.

[38] M. A. Imtiaz, D. Starobinski, and A. Trachtenberg, łCharacterizing Orphan
Transactions in the Bitcoin Network,ž in 2020 IEEE International Conference
on Blockchain and Cryptocurrency (ICBC), pp. 1ś9, 2020.

[39] M. A. Imtiaz, D. Starobinski, and A. Trachtenberg, łInvestigating Orphan
Transactions in the Bitcoin Network,ž IEEE Transactions on Network and
Service Management, vol. 18, no. 2, pp. 1718ś1731, 2021.

[40] S. Delgado-Segura, S. Bakshi, C. Pérez-Solà, J. Litton, A. Pachulski,
A. Miller, and B. Bhattacharjee, łTxProbe: Discovering Bitcoin’s network
topology using orphan transactions,ž in International Conference on Financial
Cryptography and Data Security, pp. 550ś566, Springer, 2019.

[41] A. Miller and R. Jansen, łShadow-Bitcoin: Scalable Simulation via Direct
Execution of Multi-Threaded Applications,ž in 8th Workshop on Cyber
Security Experimentation and Test (CSET 15), (Washington, D.C.), USENIX
Association, Aug. 2015.

[42] łCVE-2012-3789.ž https://en.bitcoin.it/wiki/CVE-2012-3789. Online;
Accessed: Feb 12, 2020.

[43] łWhat are orphaned and stale blocks?.ž
https://bitcoin.stackexchange.com/q/5859, Dec 2012. Online; Accessed:
Nov 24, 2021.

158

https://blog.crypto.com/global-crypto-users-over-200-million/
https://twitter.com/richardbranson/status/403884094397759489?s=20
https://twitter.com/richardbranson/status/403884094397759489?s=20
https://about.att.com/story/2019/att_bitpay.html
https://promotions.newegg.com/nepro/16-6277/index.html
https://coinmarketcap.com/currencies/bitcoin/
https://coinmarketcap.com/charts/
https://en.bitcoin.it/wiki/CVE-2012-3789
https://bitcoin.stackexchange.com/q/5859

[44] J. Göbel and A. Krzesinski, łIncreased block size and Bitcoin blockchain
dynamics,ž in 2017 27th International Telecommunication Networks and
Applications Conference (ITNAC), pp. 1ś6, 2017.

[45] C. Decker and R. Wattenhofer, łInformation propagation in the bitcoin
network,ž in 13th IEEE International Conference on Peer-to-Peer Computing
(IEEE P2P 2013), pp. 1ś10, IEEE, 2013.

[46] I. Eyal and E. G. Sirer, łMajority is Not Enough: Bitcoin Mining is
Vulnerable,ž Communications of the ACM, vol. 61, p. 95ś102, June 2018.

[47] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba, A. Miller,
P. Saxena, E. Shi, E. Gün Sirer, D. Song, and R. Wattenhofer, łOn Scaling
Decentralized Blockchains,ž in Financial Cryptography and Data Security
(J. Clark, S. Meiklejohn, P. Y. Ryan, D. Wallach, M. Brenner, and K. Rohloff,
eds.), (Berlin, Heidelberg), pp. 106ś125, Springer Berlin Heidelberg, 2016.

[48] S. Rahmadika, S. Noh, K. Lee, B. J. Kweka, and K.-H. Rhee, łThe dilemma of
parameterizing propagation time in blockchain P2P network,ž Journal of
Information Processing Systems, vol. 16, no. 3, pp. 699ś717, 2020.

[49] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, łEclipse Attacks on
Bitcoin’s Peer-to-Peer Network,ž in 24th USENIX Security Symposium
(USENIX Security 15), (Washington, D.C.), pp. 129ś144, USENIX
Association, Aug. 2015.

[50] J. Garzik, T. Harding, and D. V. Johannsson, łDynamic maximum block size
by miner vote.ž
https://github.com/jgarzik/bip100/blob/master/bip-0100.mediawiki,
2015. Online; Accessed: May 24, 2021.

[51] G. Andresen, łIncrease maximum block size.ž
https://github.com/bitcoin/bips/blob/master/bip-0101.mediawiki,
2015. Online; Accessed: May 24, 2021.

[52] J. Garzik, łBlock size increase to 2MB.ž
https://github.com/bitcoin/bips/blob/master/bip-0102.mediawiki,
2015. Online; Accessed: May 24, 2021.

[53] P. Wuille, łBlock size following technological growth.ž
https://github.com/bitcoin/bips/blob/master/bip-0103.mediawiki,
2015. Online; Accessed: May 24, 2021.

[54] M. Corallo, łCompact Block Relay.ž
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki,
2016. Online; Accessed: May 24, 2021.

159

https://github.com/jgarzik/bip100/blob/master/bip-0100.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0101.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0102.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0103.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki

[55] A. P. Ozisik, G. Andresen, B. N. Levine, D. Tapp, G. Bissias, and S. Katkuri,
łGraphene: Efficient Interactive Set Reconciliation Applied to Blockchain
Propagation,ž in Proceedings of the ACM Special Interest Group on Data
Communication, SIGCOMM ’19, (New York, NY, USA), p. 303ś317,
Association for Computing Machinery, 2019.

[56] P. Tschipper, łBUIP010 (passed): Xtreme Thinblocks.ž https:

//bitco.in/forum/threads/buip010-passed-xtreme-thinblocks.774/,
2016. Online; Accessed: Nov 11, 2021.

[57] łDetailed Protocol Design for Xtreme Thin blocks (Xthinblocks).ž
https://github.com/BitcoinUnlimited/BitcoinUnlimited/blob/releas

e/doc/bu-xthin-protocol.md, 2016. Online; Accessed: Nov 11, 2021.

[58] M. Dotan, Y.-A. Pignolet, S. Schmid, S. Tochner, and A. Zohar, łSOK:
Cryptocurrency Networking Context, State-of-the-Art, Challenges,ž in
Proceedings of the 15th International Conference on Availability, Reliability
and Security, ARES ’20, (New York, NY, USA), Association for Computing
Machinery, 2020.

[59] A. E. Gencer, S. Basu, I. Eyal, R. van Renesse, and E. G. Sirer,
łDecentralization in Bitcoin and Ethereum Networks,ž in Financial
Cryptography and Data Security (S. Meiklejohn and K. Sako, eds.), (Berlin,
Heidelberg), pp. 439ś457, Springer Berlin Heidelberg, 2018.

[60] U. Klarman, S. Basu, A. Kuzmanovic, and E. G. Sirer, łbloxroute: A scalable
trustless blockchain distribution network whitepaper.ž https://bloxroute.

com/wp-content/uploads/2019/11/bloXrouteWhitepaper.pdf, 2018.
Online; Accessed: Nov 10, 2021.

[61] N. Chawla, H. W. Behrens, D. Tapp, D. Boscovic, and K. S. Candan,
łVelocity: Scalability Improvements in Block Propagation Through Rateless
Erasure Coding,ž in 2019 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC), pp. 447ś454, 2019.

[62] L. Zhang, T. Wang, and S. C. Liew, łSpeeding up Block Propagation in
Blockchain Network: Uncoded and Coded Designs,ž CoRR,
vol. abs/2101.00378, 2021.

[63] G. Andresen, ł[bitcoin-dev] Weak block thoughts....ž https://lists.linuxf

oundation.org/pipermail/bitcoin-dev/2015-Sep/011157.html, 2015.
Online; Accessed: Nov 11, 2021.

[64] J. Huang, L. Tan, S. Mao, and K. Yu, łBlockchain Network Propagation
Mechanism Based on P4P Architecture,ž Security and Communication
Networks, vol. 2021, p. 8363131, Aug 2021.

160

https://bitco.in/forum/threads/buip010-passed-xtreme-thinblocks.774/
https://bitco.in/forum/threads/buip010-passed-xtreme-thinblocks.774/
https://github.com/BitcoinUnlimited/BitcoinUnlimited/blob/release/doc/bu-xthin-protocol.md
https://github.com/BitcoinUnlimited/BitcoinUnlimited/blob/release/doc/bu-xthin-protocol.md
https://bloxroute.com/wp-content/uploads/2019/11/bloXrouteWhitepaper.pdf
https://bloxroute.com/wp-content/uploads/2019/11/bloXrouteWhitepaper.pdf
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-Sep/011157.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-Sep/011157.html

[65] M. Jin, X. Chen, and S.-J. Lin, łReducing the Bandwidth of Block
Propagation in Bitcoin Network With Erasure Coding,ž IEEE Access, vol. 7,
pp. 175606ś175613, 2019.

[66] Z. Lihao, T. Wang, and S. C. Liew, łSpeeding up Block Propagation in
Blockchain Network: Uncoded and Coded Designs.ž
https://www.researchgate.net/publication/348212522_Speeding_up_B

lock_Propagation_in_Blockchain_Network_Uncoded_and_Coded_Designs,
01 2021. Online; Accessed: Nov 11, 2021.

[67] E. Rohrer and F. Tschorsch, łKadcast: A Structured Approach to Broadcast
in Blockchain Networks,ž in Proceedings of the 1st ACM Conference on
Advances in Financial Technologies, AFT ’19, (New York, NY, USA),
p. 199ś213, Association for Computing Machinery, 2019.

[68] M. A. Imtiaz, D. Starobinski, A. Trachtenberg, and N. Younis, łChurn in the
Bitcoin Network: Characterization and Impact,ž in 2019 IEEE International
Conference on Blockchain and Cryptocurrency (ICBC), pp. 431ś439, 2019.

[69] M. A. Imtiaz, D. Starobinski, A. Trachtenberg, and N. Younis, łChurn in the
Bitcoin Network,ž IEEE Transactions on Network and Service Management,
vol. 18, no. 2, pp. 1598ś1615, 2021.

[70] L. Kiffer, A. Salman, D. Levin, A. Mislove, and C. Nita-Rotaru, łUnder the
Hood of the Ethereum Gossip Protocol,ž in Proceedings of the 2021
International Conference on Financial Cryptography and Data Security
(FC’21), 2021.

[71] D. Mechkaroska, V. Dimitrova, and A. Popovska-Mitrovikj, łAnalysis of the
Possibilities for Improvement of BlockChain Technology,ž in 2018 26th
Telecommunications Forum (TELFOR), pp. 1ś4, 2018.

[72] M. Essaid, H. W. Kim, W. Guil Park, K. Y. Lee, S. Jin Park, and H. T. Ju,
łNetwork Usage of Bitcoin Full Node,ž in 2018 International Conference on
Information and Communication Technology Convergence (ICTC),
pp. 1286ś1291, 2018.

[73] D. Perard, J. Lacan, Y. Bachy, and J. Detchart, łErasure Code-Based Low
Storage Blockchain Node,ž in 2018 IEEE International Conference on Internet
of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and
IEEE Smart Data (SmartData), pp. 1622ś1627, 2018.

[74] T. Dryja, łUtreexo: A dynamic hash-based accumulator optimized for the
Bitcoin UTXO set.ž Cryptology ePrint Archive, Report 2019/611, 2019.
https://ia.cr/2019/611.

161

https://www.researchgate.net/publication/348212522_Speeding_up_Block_Propagation_in_Blockchain_Network_Uncoded_and_Coded_Designs
https://www.researchgate.net/publication/348212522_Speeding_up_Block_Propagation_in_Blockchain_Network_Uncoded_and_Coded_Designs
https://ia.cr/2019/611

[75] M. Florian, S. Henningsen, S. Beaucamp, and B. Scheuermann, łErasing Data
from Blockchain Nodes,ž in 2019 IEEE European Symposium on Security and
Privacy Workshops (EuroS PW), pp. 367ś376, 2019.

[76] F. Tschorsch and B. Scheuermann, łBitcoin and Beyond: A Technical Survey
on Decentralized Digital Currencies,ž IEEE Communications Surveys
Tutorials, vol. 18, no. 3, pp. 2084ś2123, 2016.

[77] E. developers, łNODES AND CLIENTS.ž https://ethereum.org/en/deve

lopers/docs/nodes-and-clients/#network-benefits. Online; Accessed:
Aug 18, 2021.

[78] Y. Wang, łA Blockchain System with Lightweight Full Node Based on Dew
Computing,ž Internet of Things, vol. 11, p. 100184, 2020.

[79] O. I. Oluwasuji, O. Malik, J. Zhang, and S. D. Ramchurn, łSolving the fair
electric load shedding problem in developing countries,ž Autonomous Agents
and Multi-Agent Systems, vol. 34, p. 12, Dec 2019.

[80] A. Hafeez, W. A. Khan, and M. A. Rahman, łDevelopment of Financial
Model to Solarize Public Institutes in Pakistan,ž in 2021 4th International
Conference on Energy Conservation and Efficiency (ICECE), pp. 1ś10, 2021.

[81] T. H. Meles, łImpact of power outages on households in developing countries:
Evidence from Ethiopia,ž Energy Economics, vol. 91, p. 104882, 2020.

[82] H. H. Alhelou, M. E. Hamedani-Golshan, T. C. Njenda, and P. Siano, łA
Survey on Power System Blackout and Cascading Events: Research
Motivations and Challenges,ž Energies, vol. 12, pp. 1ś28, February 2019.

[83] G. R. Timilsina, P. Sapkota, and J. Steinbuks, łHow much has Nepal lost in
the last decade due to load shedding? An economic assessment using a CGE
model,ž Policy Research Working Papers, World Bank, Washington, DC, Jun
2018.

[84] IEA, IRENA, UNSD, WB, and WHO, łTracking SDG7: The Energy Progress
Report.ž https://irena.org/publications/2019/May/Tracking-SDG7-Th

e-Energy-Progress-Report-2019, 2019. Online; Accessed: Aug 14, 2021.

[85] L. Odarno, ł1.2 Billion People Lack Electricity. Increasing Supply Alone
Won’t Fix the Problem.ž https://www.wri.org/insights/12-billion-peop
le-lack-electricity-increasing-supply-alone-wont-fix-problem, Mar
2017. Online; Accessed: Aug 14, 2021.

162

https://ethereum.org/en/developers/docs/nodes-and-clients/#network-benefits
https://ethereum.org/en/developers/docs/nodes-and-clients/#network-benefits
https://irena.org/publications/2019/May/Tracking-SDG7-The-Energy-Progress-Report-2019
https://irena.org/publications/2019/May/Tracking-SDG7-The-Energy-Progress-Report-2019
https://www.wri.org/insights/12-billion-people-lack-electricity-increasing-supply-alone-wont-fix-problem
https://www.wri.org/insights/12-billion-people-lack-electricity-increasing-supply-alone-wont-fix-problem

[86] R. Fetter, A. Fuller, J. Porcaro, and C. Sinai, łYou can’t őght pandemics
without powerÐelectric power.ž
https://www.brookings.edu/blog/future-development/2020/06/05/you

-cant-fight-pandemics-without-power-electric-power/, Jun 2020.
Online; Accessed: Aug 14, 2021.

[87] P. Cramton, łLessons from the 2021 Texas electricity crisis,ž Utility Dive, May
2021.

[88] M. Rae, The Texas Energy Crisis: Has Deregulation Hurt Consumers?
London: SAGE Publications: SAGE Business Cases Originals, 2021.

[89] J. Bialek, łWhat does the GB power outage on 9 August 2019 tell us about
the current state of decarbonised power systems?,ž Energy Policy, vol. 146,
p. 111821, 2020.

[90] G. J. Rubin and M. B. Rogers, łBehavioural and psychological responses of
the public during a major power outage: A literature review,ž International
Journal of Disaster Risk Reduction, vol. 38, p. 101226, 2019.

[91] W. Li, J. Zhou, and X. Hu, łComparison of transmission equipment outage
performance in Canada, USA and China,ž in 2008 IEEE Canada Electric
Power Conference, pp. 1ś8, 2008.

[92] A. Lindstrom and S. Hoff, łU.S. customers experienced an average of nearly
six hours of power interruptions in 2018.ž
https://www.eia.gov/todayinenergy/detail.php?id=43915, Jun 2020.
Online; Accessed: Aug 14, 2021.

[93] A. Muir and J. Lopatto, łFinal report on the Aug 14, 2003 blackout in the
United States and Canada : causes and recommendations.ž
https://www.energy.gov/sites/default/files/oeprod/DocumentsandMe

dia/BlackoutFinal-Web.pdf, Apr 2004. Online; Accessed: Nov 27, 2021.

[94] R. Perez, M. Kmiecik, T. Hoff, J. Williams, C. Herig, S. Letendre, and
R. Margolis, łAvailability of dispersed Photovoltaic resource during the
August 14th 2003 northeast power outage,ž Proceedings of the American Solar
Energy Society, Portland, OR, 2004.

[95] S. Adderly, łReviewing power outage trends, electric reliability indices and
smart grid funding,ž Master’s thesis, The University of Vermont and State
Agricultural College, 2016.

[96] GENERAC, łCurrent power outages - USA.ž
https://www.generac.com/poweroutagecentral, 2021. Online; Accessed:
Aug 14, 2021.

163

https://www.brookings.edu/blog/future-development/2020/06/05/you-cant-fight-pandemics-without-power-electric-power/
https://www.brookings.edu/blog/future-development/2020/06/05/you-cant-fight-pandemics-without-power-electric-power/
https://www.eia.gov/todayinenergy/detail.php?id=43915
https://www.energy.gov/sites/default/files/oeprod/DocumentsandMedia/BlackoutFinal-Web.pdf
https://www.energy.gov/sites/default/files/oeprod/DocumentsandMedia/BlackoutFinal-Web.pdf
https://www.generac.com/poweroutagecentral

[97] GENERAC, łCurrent power outages - Canada.ž https://www.generac.com/

be-prepared/power-outages/power-outage-tracker-canada, 2021.
Online; Accessed: Aug 14, 2021.

[98] R. Wood, łPower returns after major outage in eastern Sydney.ž
https://www.9news.com.au/national/sydney-power-outage-ausgrid-we

bsite-crashes/82674013-2a60-438a-a589-7bf89a0acc67, Jul 2021.
Online; Accessed: Aug 14, 2021.

[99] D. Stutzbach and R. Rejaie, łUnderstanding churn in peer-to-peer networks,ž
in Proceedings of the 6th ACM SIGCOMM conference on Internet
measurement, pp. 189ś202, ACM, 2006.

[100] D. Stutzbach and R. Rejaie, łTowards a better understanding of churn in
peer-to-peer networks,ž Tech. Rep. CIS-TR-04-06, Department of Computer
Science, University of Oregon,
http://ix.cs.uoregon.edu/~reza/PUB/tr04-06.pdf, 2004.

[101] O. Herrera and T. Znati, łModeling Churn in P2P Networks,ž in 40th Annual
Simulation Symposium (ANSS’07), pp. 33ś40, 2007.

[102] Z. Yao, D. Leonard, X. Wang, and D. Loguinov, łModeling Heterogeneous
User Churn and Local Resilience of Unstructured P2P Networks,ž in
Proceedings of the 2006 IEEE International Conference on Network Protocols,
pp. 32ś41, 2006.

[103] X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross, łA measurement study of
a large-scale P2P IPTV system,ž IEEE transactions on multimedia, vol. 9,
no. 8, pp. 1672ś1687, 2007.

[104] D. Yang, Y.-x. Zhang, H.-k. Zhang, T.-Y. Wu, and H.-C. Chao, łMulti-factors
oriented study of P2P Churn,ž International Journal of Communication
Systems, vol. 22, no. 9, pp. 1089ś1103, 2009.

[105] F. Lin, C. Chen, and H. Zhang, łCharacterizing Churn in Gnutella Network in
a New Aspect,ž in 2008 9th International Conference for Young Computer
Scientists, (Los Alamitos, CA, USA), pp. 305ś309, IEEE Computer Society,
Nov 2008.

[106] I. Eyal, A. E. Gencer, E. G. Sirer, and R. V. Renesse, łBitcoin-NG: A Scalable
Blockchain Protocol,ž in 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 16), (Santa Clara, CA), pp. 45ś59,
USENIX Association, Mar. 2016.

164

https://www.generac.com/be-prepared/power-outages/power-outage-tracker-canada
https://www.generac.com/be-prepared/power-outages/power-outage-tracker-canada
https://www.9news.com.au/national/sydney-power-outage-ausgrid-website-crashes/82674013-2a60-438a-a589-7bf89a0acc67
https://www.9news.com.au/national/sydney-power-outage-ausgrid-website-crashes/82674013-2a60-438a-a589-7bf89a0acc67
http://ix.cs.uoregon.edu/~reza/PUB/tr04-06.pdf

[107] M. Shayan, C. Fung, C. J. M. Yoon, and I. Beschastnikh, łBiscotti: A
Blockchain System for Private and Secure Federated Learning,ž IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 7,
pp. 1513ś1525, 2021.

[108] S. Pešić, M. Radovanović, M. Ivanović, M. Tošić, O. Iković, and D. Bošković,
łHyperledger Fabric Blockchain as a Service for the IoT: Proof of Concept,ž in
Model and Data Engineering (K.-D. Schewe and N. K. Singh, eds.), (Cham),
pp. 172ś183, Springer International Publishing, 2019.

[109] Y. Hu, A. Manzoor, P. Ekparinya, M. Liyanage, K. Thilakarathna,
G. Jourjon, and A. Seneviratne, łA Delay-Tolerant Payment Scheme Based on
the Ethereum Blockchain,ž IEEE Access, vol. 7, pp. 33159ś33172, 2019.

[110] T. Neudecker, P. Andelőnger, and H. Hartenstein, łA simulation model for
analysis of attacks on the Bitcoin peer-to-peer network,ž in 2015 IFIP/IEEE
International Symposium on Integrated Network Management (IM),
pp. 1327ś1332, 2015.

[111] M. Apostolaki, A. Zohar, and L. Vanbever, łHijacking Bitcoin: Routing
Attacks on Cryptocurrencies,ž in 2017 IEEE Symposium on Security and
Privacy (SP), pp. 375ś392, 2017.

[112] G. O. Karame, E. Androulaki, and S. Capkun, łDouble-spending fast
payments in bitcoin,ž in Proceedings of the 2012 ACM conference on
Computer and communications security, pp. 906ś917, ACM, 2012.

[113] T. Neudecker, łCharacterization of the Bitcoin Peer-to-Peer Network
(2015-2018).ž http://dsn.tm.kit.edu/bitcoin/publications/bitcoin_n

etwork_characterization.pdf, 2019.

[114] S. K. Kim, Z. Ma, S. Murali, J. Mason, A. Miller, and M. Bailey, łMeasuring
Ethereum Network Peers,ž in Proceedings of the Internet Measurement
Conference 2018, IMC ’18, (New York, NY, USA), p. 91ś104, Association for
Computing Machinery, 2018.

[115] L. Zhang, B. Lee, Y. Ye, and Y. Qiao, łEvaluation of Ethereum End-to-end
Transaction Latency,ž in 2021 11th IFIP International Conference on New
Technologies, Mobility and Security (NTMS), pp. 1ś5, 2021.

[116] Y. Shahsavari, K. Zhang, and C. Talhi, łA Theoretical Model for Block
Propagation Analysis in Bitcoin Network,ž IEEE Transactions on Engineering
Management, pp. 1ś18, 2020.

165

http://dsn.tm.kit.edu/bitcoin/publications/bitcoin_network_characterization.pdf
http://dsn.tm.kit.edu/bitcoin/publications/bitcoin_network_characterization.pdf

[117] S. Maeng, M. Essaid, C. Lee, S. Park, and H. Ju, łVisualization of Ethereum
P2P network topology and peer properties,ž International Journal of Network
Management, vol. 31, no. 6, p. e2175, 2021.

[118] J. A. Donet Donet, C. Pérez-Solà, and J. Herrera-Joancomartí, łThe bitcoin
p2p network,ž in Financial Cryptography and Data Security (R. Böhme,
M. Brenner, T. Moore, and M. Smith, eds.), (Berlin, Heidelberg), pp. 87ś102,
Springer Berlin Heidelberg, 2014.

[119] K. Dae-Yong, E. Meryam, and J. Hongtaek, łExamining Bitcoin mempools
Resemblance Using Jaccard Similarity Index,ž in 2020 21st Asia-Pacific
Network Operations and Management Symposium (APNOMS), pp. 287ś290,
2020.

[120] J. Mišić, V. B. Mišić, and X. Chang, łPerformance of Bitcoin Network With
Synchronizing Nodes and a Mix of Regular and Compact Blocks,ž IEEE
Transactions on Network Science and Engineering, vol. 7, no. 4,
pp. 3135ś3147, 2020.

[121] M. A. Imtiaz, łbitcoin-releases.ž
https://github.com/nislab/bitcoin-releases/tree/tnsm-churn, 2020.

[122] M. A. Imtiaz, łbitcoin-logs.ž
https://github.com/nislab/bitcoin-logs/tree/tnsm-churn, 2020.

[123] A. Pinar Ozisik, G. Andresen, G. Bissias, A. Houmansadr, and B. Levine,
łGraphene: A New Protocol for Block Propagation Using Set Reconciliation,ž
in Data Privacy Management, Cryptocurrencies and Blockchain Technology
(J. Garcia-Alfaro, G. Navarro-Arribas, H. Hartenstein, and
J. Herrera-Joancomartí, eds.), (Cham), pp. 420ś428, Springer International
Publishing, 2017.

[124] M. A. Imtiaz, łbitcoin-releases.ž
https://github.com/nislab/bitcoin-releases/tree/wip, 2021.

[125] M. A. Imtiaz, łbitcoin-logs.ž
https://github.com/nislab/bitcoin-logs/tree/wip, 2021.

[126] Bitcoin Wiki, łBlock.ž https://en.bitcoin.it/wiki/Block, 2016. Online;
Accessed: Nov 17, 2021.

[127] łBlock hashing algorithm.ž
https://en.bitcoin.it/wiki/Block_hashing_algorithm. Online;
Accessed: Nov 17, 2021.

166

https://github.com/nislab/bitcoin-releases/tree/tnsm-churn
https://github.com/nislab/bitcoin-logs/tree/tnsm-churn
https://github.com/nislab/bitcoin-releases/tree/wip
https://github.com/nislab/bitcoin-logs/tree/wip
https://en.bitcoin.it/wiki/Block
https://en.bitcoin.it/wiki/Block_hashing_algorithm

[128] E. developers, łBLOCKS.ž
https://ethereum.org/en/developers/docs/blocks/. Online; Accessed:
Nov 17, 2021.

[129] łOrder of transactions within a block.ž
https://bitcoin.stackexchange.com/q/23035, Mar 2014. Online;
Accessed: Aug 9, 2020.

[130] R. C. Merkle, łA Digital Signature Based on a Conventional Encryption
Function,ž in Advances in Cryptology — CRYPTO ’87 (C. Pomerance, ed.),
(Berlin, Heidelberg), pp. 369ś378, Springer Berlin Heidelberg, 1988.

[131] V. Buterin, łMerkling in Ethereum.ž
https://blog.ethereum.org/2015/11/15/merkling-in-ethereum/, Nov
2015. Online; Accessed: Nov 18, 2021.

[132] S. Gorbunov, L. Reyzin, H. Wee, and Z. Zhang, łPointproofs: Aggregating
Proofs for Multiple Vector Commitments,ž in Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’20,
(New York, NY, USA), p. 2007ś2023, Association for Computing Machinery,
2020.

[133] C. Cachin and M. Vukolic, łBlockchain Consensus Protocols in the Wild
(Keynote Talk),ž in 31st International Symposium on Distributed Computing
(DISC 2017) (A. W. Richa, ed.), vol. 91 of Leibniz International Proceedings
in Informatics (LIPIcs), (Dagstuhl, Germany), pp. 1:1ś1:16, Schloss
DagstuhlśLeibniz-Zentrum fuer Informatik, 2017.

[134] S. Zhang and J.-H. Lee, łAnalysis of the main consensus protocols of
blockchain,ž Information and Communications Technology (ICT) Express,
vol. 6, no. 2, pp. 93ś97, 2020.

[135] Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou, łA Survey of Distributed
Consensus Protocols for Blockchain Networks,ž IEEE Communications
Surveys Tutorials, vol. 22, no. 2, pp. 1432ś1465, 2020.

[136] QuantumMechanic, łProof of stake instead of proof of work.ž
https://bitcointalk.org/index.php?topic=27787.0. Online; Accessed:
Aug 10, 2021.

[137] I. Bentov, A. Gabizon, and A. Mizrahi, łCryptocurrencies Without Proof of
Work,ž in Financial Cryptography and Data Security (J. Clark, S. Meiklejohn,
P. Y. Ryan, D. Wallach, M. Brenner, and K. Rohloff, eds.), (Berlin,
Heidelberg), pp. 142ś157, Springer Berlin Heidelberg, 2016.

167

https://ethereum.org/en/developers/docs/blocks/
https://bitcoin.stackexchange.com/q/23035
https://blog.ethereum.org/2015/11/15/merkling-in-ethereum/
https://bitcointalk.org/index.php?topic=27787.0

[138] Hyperledger, łProof of Elapsed Time (PoET).ž
https://sawtooth.hyperledger.org/docs/core/nightly/0-8/introduct

ion.html#proof-of-elapsed-time-poet. Online; Accessed: Aug 10, 2021.

[139] łQuorum Whitepaper.ž https://github.com/ConsenSys/quorum/blob/mas

ter/docs/Quorum%20Whitepaper%20v0.2.pdf. Online; Accessed: Nov 24,
2021.

[140] O. Beigel, łThe Complete Guide to Bitcoin Fees.ž
https://99bitcoins.com/bitcoin/fees/. Online; Accessed: Dec 8, 2019.

[141] łConőrmed Transactions Per Day.ž https:

//www.blockchain.com/en/charts/n-transactions?timespan=180days.
Online; Accessed: Nov 24, 2021.

[142] łTotal Number of Transactions.ž https:

//www.blockchain.com/charts/n-transactions-total?timespan=all.
Online; Accessed: Nov 24, 2021.

[143] łNetwork Difficulty.ž https://www.blockchain.com/charts/difficulty.
Online; Accessed: Nov 24, 2021.

[144] łTotal Hash Rate (TH/s).ž
https://www.blockchain.com/charts/hash-rate. Online; Accessed: Nov
24, 2021.

[145] A. Stone, łbu0.12.0.ž https://github.com/BitcoinUnlimited/BitcoinUnl

imited/releases/tag/bu0.12.0, 2016. Online; Accessed: Apr 7, 2021.

[146] C. Decker, On the Scalability and Security of Bitcoin. PhD thesis, ETH
Zurich, Zurich, https://doi.org/10.3929/ethz-a-010619000, 2016.

[147] B. Magazine, łWhat is the block size limit?.ž https://bitcoinmagazine.co

m/guides/what-is-the-bitcoin-block-size-limit, 2020. Online;
Accessed: Apr 7, 2021.

[148] Blockchain.com, łConőrmed transactions per day.ž
https://www.blockchain.com/charts/n-transactions. Online; Accessed:
Apr 7, 2021.

[149] B. Unlimited, łBitcoin Unlimited FAQ.ž
https://www.bitcoinunlimited.info/faq/what-is-bu. Online; Accessed:
Apr 7, 2021.

[150] Blockchain.com, łAverage transactions per block.ž
https://www.blockchain.com/charts/n-transactions-per-block.
Online; Accessed: Apr 7, 2021.

168

https://sawtooth.hyperledger.org/docs/core/nightly/0-8/introduction.html#proof-of-elapsed-time-poet
https://sawtooth.hyperledger.org/docs/core/nightly/0-8/introduction.html#proof-of-elapsed-time-poet
https://github.com/ConsenSys/quorum/blob/master/docs/Quorum%20Whitepaper%20v0.2.pdf
https://github.com/ConsenSys/quorum/blob/master/docs/Quorum%20Whitepaper%20v0.2.pdf
https://99bitcoins.com/bitcoin/fees/
https://www.blockchain.com/en/charts/n-transactions?timespan=180days
https://www.blockchain.com/en/charts/n-transactions?timespan=180days
https://www.blockchain.com/charts/n-transactions-total?timespan=all
https://www.blockchain.com/charts/n-transactions-total?timespan=all
https://www.blockchain.com/charts/difficulty
https://www.blockchain.com/charts/hash-rate
https://github.com/BitcoinUnlimited/BitcoinUnlimited/releases/tag/bu0.12.0
https://github.com/BitcoinUnlimited/BitcoinUnlimited/releases/tag/bu0.12.0
https://doi.org/10.3929/ethz-a-010619000
https://bitcoinmagazine.com/guides/what-is-the-bitcoin-block-size-limit
https://bitcoinmagazine.com/guides/what-is-the-bitcoin-block-size-limit
https://www.blockchain.com/charts/n-transactions
https://www.bitcoinunlimited.info/faq/what-is-bu
https://www.blockchain.com/charts/n-transactions-per-block

[151] łBlock #681,765.ž
https://explorer.bitcoinunlimited.info/block-height/681765.
Online; Accessed: Nov 24, 2021.

[152] B. C. Explorer, łBlock stats.ž
https://explorer.bitcoinunlimited.info/block-stats. Online;
Accessed: Apr 7, 2021.

[153] B. H. Bloom, łSpace/Time Trade-Offs in Hash Coding with Allowable
Errors,ž Communications of the ACM, vol. 13, p. 422ś426, July 1970.

[154] Li Fan, Pei Cao, J. Almeida, and A. Z. Broder, łSummary cache: a scalable
wide-area Web cache sharing protocol,ž IEEE/ACM Transactions on
Networking, vol. 8, no. 3, pp. 281ś293, 2000.

[155] S. Agarwal and A. Trachtenberg, łApproximating the number of differences
between remote sets,ž in 2006 IEEE Information Theory Workshop - ITW ’06
Punta del Este, pp. 217ś221, 2006.

[156] M. T. Goodrich and M. Mitzenmacher, łInvertible bloom lookup tables,ž in
2011 49th Annual Allerton Conference on Communication, Control, and
Computing (Allerton), pp. 792ś799, 2011.

[157] D. Eppstein and M. T. Goodrich, łStraggler Identiőcation in Round-Trip
Data Streams via Newton’s Identities and Invertible Bloom Filters,ž IEEE
Transactions on Knowledge and Data Engineering, vol. 23, no. 2, pp. 297ś306,
2011.

[158] D. Eppstein, M. T. Goodrich, F. Uyeda, and G. Varghese, łWhat’s the
Difference? Efficient Set Reconciliation without Prior Context,ž in Proceedings
of the ACM SIGCOMM 2011 Conference, SIGCOMM ’11, (New York, NY,
USA), p. 218ś229, Association for Computing Machinery, 2011.

[159] A. Suisani, łBitcoin Unlimited - Bitcoin Cash release 1.6.0.0.ž
https://github.com/BitcoinUnlimited/BitcoinUnlimited/releases/ta

g/bucash1.6.0.0, 2019. Online; Accessed: Apr 9, 2021.

[160] łnet_processing.cpp.ž https://gitlab.com/bitcoinunlimited/BCHUnlim

ited/-/blob/BCHunlimited1.9.0.1/src/net_processing.cpp#L399-408.
Online; Accessed: Apr 9, 2021.

[161] G. Bissias, łgraphene-specification-v2.2.mediawiki.ž
https://gitlab.com/bitcoinunlimited/BCHUnlimited/-/blob/dev/doc/

graphene-specification-v2.2.mediawiki, 2019. Online; Accessed: Apr 10,
2021.

169

https://explorer.bitcoinunlimited.info/block-height/681765
https://explorer.bitcoinunlimited.info/block-stats
https://github.com/BitcoinUnlimited/BitcoinUnlimited/releases/tag/bucash1.6.0.0
https://github.com/BitcoinUnlimited/BitcoinUnlimited/releases/tag/bucash1.6.0.0
https://gitlab.com/bitcoinunlimited/BCHUnlimited/-/blob/BCHunlimited1.9.0.1/src/net_processing.cpp#L399-408
https://gitlab.com/bitcoinunlimited/BCHUnlimited/-/blob/BCHunlimited1.9.0.1/src/net_processing.cpp#L399-408
https://gitlab.com/bitcoinunlimited/BCHUnlimited/-/blob/dev/doc/graphene-specification-v2.2.mediawiki
https://gitlab.com/bitcoinunlimited/BCHUnlimited/-/blob/dev/doc/graphene-specification-v2.2.mediawiki

[162] łnetprocessing.cpp.ž https:

//github.com/bitcoin/bitcoin/blob/0.18/src/net_processing.cpp.
Online; Accessed: Nov 11, 2019.

[163] łSample Bitcoin conőguration őle.ž https://github.com/MrChrisJ/fullno

de/blob/master/Setup_Guides/bitcoin.conf. Online; Accessed: Nov 11,
2019.

[164] łStuck Bitcoin transaction.ž
https://bitcointalk.org/index.php?topic=5135053.0. Online; Accessed:
Dec 18, 2019.

[165] łBIP-125.ž
https://github.com/bitcoin/bips/blob/master/bip-0125.mediawiki.
Online; Accessed: Dec 8, 2019.

[166] H. Kalodner, M. Möser, K. Lee, S. Goldfeder, M. Plattner, A. Chator, and
A. Narayanan, łBlockSci: Design and applications of a blockchain analysis
platform,ž in 29th USENIX Security Symposium (USENIX Security 20),
pp. 2721ś2738, USENIX Association, Aug. 2020.

[167] J. Augustine, G. Pandurangan, and P. Robinson, łDistributed algorithmic
foundations of dynamic networks,ž ACM SIGACT News, vol. 47, no. 1,
pp. 69ś98, 2016.

[168] T. Jacobs and G. Pandurangan, łStochastic analysis of a churn-tolerant
structured peer-to-peer scheme,ž Peer-to-Peer Networking and Applications,
vol. 6, no. 1, pp. 1ś14, 2013.

[169] łHow does a node get information from other nodes?.ž
https://bitcoin.stackexchange.com/questions/70621/how-does-a-nod

e-get-information-from-other-nodes/70623. Online; Accessed: Oct 17,
2019.

[170] J. Mišić, V. B. Mišić, and X. Chang, łOn the beneőts of compact blocks in
Bitcoin,ž in ICC 2020-2020 IEEE International Conference on
Communications (ICC), pp. 1ś6, IEEE, 2020.

[171] S. G. Motlagh, J. Misic, and V. B. Misic, łModeling of Churn Process in
Bitcoin Network,ž in 2020 International Conference on Computing,
Networking and Communications (ICNC), pp. 686ś691, IEEE, 2020.

[172] S. G. Motlagh, J. Mišić, and V. B. Mišić, łImpact of Node Churn in the
Bitcoin Network,ž IEEE Transactions on Network Science and Engineering,
vol. 7, no. 3, pp. 2104ś2113, 2020.

170

https://github.com/bitcoin/bitcoin/blob/0.18/src/net_processing.cpp
https://github.com/bitcoin/bitcoin/blob/0.18/src/net_processing.cpp
https://github.com/MrChrisJ/fullnode/blob/master/Setup_Guides/bitcoin.conf
https://github.com/MrChrisJ/fullnode/blob/master/Setup_Guides/bitcoin.conf
https://bitcointalk.org/index.php?topic=5135053.0
https://github.com/bitcoin/bips/blob/master/bip-0125.mediawiki
https://bitcoin.stackexchange.com/questions/70621/how-does-a-node-get-information-from-other-nodes/70623
https://bitcoin.stackexchange.com/questions/70621/how-does-a-node-get-information-from-other-nodes/70623

[173] S. G. Motlagh, J. Mišić, and V. B. Mišić, łImpact of Node Churn in the
Bitcoin Network with Compact Blocks,ž in GLOBECOM 2020 - 2020 IEEE
Global Communications Conference, pp. 1ś6, 2020.

[174] S. G. Motlagh, J. Mišić, and V. B. Mišić, łAn analytical model for churn
process in Bitcoin network with ordinary and relay nodes,ž Peer-to-Peer
Networking and Applications, vol. 13, pp. 1931ś1942, 2020.

[175] M. Saad, S. Chen, and D. Mohaisen, łRoot Cause Analyses for the
Deteriorating Bitcoin Network Synchronization,ž in 2021 IEEE 41st
International Conference on Distributed Computing Systems (ICDCS),
pp. 239ś249, 2021.

[176] G. Naumenko, G. Maxwell, P. Wuille, A. Fedorova, and I. Beschastnikh,
łErlay: Efficient Transaction Relay for Bitcoin,ž in Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security,
pp. 817ś831, 2019.

[177] łBitcoin Orphan Transactions and CVE-2012-3789.ž https://cryptoservic

es.github.io/fde/2018/12/14/bitcoin-orphan-TX-CVE.html. Online;
Accessed: Feb 12, 2020.

[178] łDoS őx for mapOrphanTransactions.ž
https://github.com/bitcoin/bitcoin/pull/911. Online; Accessed: Feb
12, 2020.

[179] A. Yeow, łBitnodes.ž https://bitnodes.earn.com. Online; Accessed: Nov
15, 2018.

[180] A. Yeow, łBitnodes API v1.0.ž https://bitnodes.earn.com/api/. Online;
Accessed: Dec 17, 2018.

[181] łProtocol Documentation.ž
https://en.bitcoin.it/wiki/Protocol_documentation, 2018. Online;
Accessed: May 17, 2018.

[182] łFull node, NODE_NETWORK_LIMITED (1037) what does it mean?.ž
https://www.reddit.com/r/Bitcoin/comments/8wkuod/full_node_node_n

etwork_limited_1037_what_does_it/. Online; Accessed: Sep 19, 2020.

[183] J. Falkner, M. Piatek, J. P. John, A. Krishnamurthy, and T. Anderson,
łProőling a million user DHT,ž in Proceedings of the 7th ACM SIGCOMM
conference on Internet measurement, pp. 129ś134, ACM, 2007.

[184] F. E. Bustamante and Y. Qiao, łFriendships that last: Peer lifespan and its
role in P2P protocols,ž in Web content caching and distribution, pp. 233ś246,
Springer, 2004.

171

https://cryptoservices.github.io/fde/2018/12/14/bitcoin-orphan-TX-CVE.html
https://cryptoservices.github.io/fde/2018/12/14/bitcoin-orphan-TX-CVE.html
https://github.com/bitcoin/bitcoin/pull/911
https://bitnodes.earn.com
https://bitnodes.earn.com/api/
https://en.bitcoin.it/wiki/Protocol_documentation
https://www.reddit.com/r/Bitcoin/comments/8wkuod/full_node_node_network_limited_1037_what_does_it/
https://www.reddit.com/r/Bitcoin/comments/8wkuod/full_node_node_network_limited_1037_what_does_it/

[185] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, and
J. Zahorjan, łMeasurement, modeling, and analysis of a peer-to-peer
őle-sharing workload,ž ACM SIGOPS Operating Systems Review, vol. 37,
no. 5, pp. 314ś329, 2003.

[186] J. Li, J. Stribling, R. Morris, and M. F. Kaashoek, łBandwidth-efficient
management of DHT routing tables,ž in Proceedings of the 2nd conference on
Symposium on Networked Systems Design & Implementation-Volume 2,
pp. 99ś114, USENIX Association, 2005.

[187] S. Sen and J. Wang, łAnalyzing peer-to-peer traffic across large networks,ž in
Proceedings of the 2nd ACM SIGCOMM Workshop on Internet measurment,
pp. 137ś150, ACM, 2002.

[188] S. Foss, D. Korshunov, and S. Zachary, łHeavy-Tailed and Long-Tailed
Distributions,ž in An Introduction to Heavy-Tailed and Subexponential
Distributions, pp. 7ś42, New York, NY: Springer New York, 2013.

[189] J. P. Nolan, łMaximum likelihood estimation and diagnostics for stable
distributions,ž in Lévy processes, pp. 379ś400, Springer, 2001.

[190] T. M. Inc., łFit probability distribution object to data - MATLAB őtdist.ž
https://www.mathworks.com/help/stats/fitdist.html. Online; Accessed:
Nov 06, 2018.

[191] łEvaluating Goodness of Fit.ž https://www.mathworks.com/help/curvefi

t/evaluating-goodness-of-fit.html#bq_5kwr-7. Online; Accessed: Nov
18, 2018.

[192] łCoefficient of Determination (R-squared) Explained.ž
https://towardsdatascience.com/coefficient-of-determination-r-sq

uared-explained-db32700d924e. Online; Accessed: Dec 2, 2018.

[193] łRMS Error.ž
http://statweb.stanford.edu/~susan/courses/s60/split/node60.html.
Online; Accessed: Dec 2, 2018.

[194] S. Ross, Stochastic Processes, p. 114. Wiley series in probability and
mathematical statistics, Wiley, second ed., 1995.

[195] M. G. Reed, P. F. Syverson, and D. M. Goldschlag, łAnonymous connections
and onion routing,ž IEEE Journal on Selected areas in Communications,
vol. 16, no. 4, pp. 482ś494, 1998.

[196] J. Benesty, J. Chen, Y. Huang, and I. Cohen, łPearson correlation coefficient,ž
in Noise reduction in speech processing, pp. 1ś4, Springer, 2009.

172

https://www.mathworks.com/help/stats/fitdist.html
https://www.mathworks.com/help/curvefit/evaluating-goodness-of-fit.html#bq_5kwr-7
https://www.mathworks.com/help/curvefit/evaluating-goodness-of-fit.html#bq_5kwr-7
https://towardsdatascience.com/coefficient-of-determination-r-squared-explained-db32700d924e
https://towardsdatascience.com/coefficient-of-determination-r-squared-explained-db32700d924e
http://statweb.stanford.edu/~susan/courses/s60/split/node60.html

[197] łPearson Correlations.ž
https://www.spss-tutorials.com/pearson-correlation-coefficient/.
Online; Accessed: Sep 23, 2020.

[198] łBitcoin Developer Reference.ž https:

//bitcoin.org/en/developer-reference#remote-procedure-calls-rpcs,
2017. Online; Accessed: Nov 17, 2018.

[199] łBitcoin Core :: setban (0.16.0 RPC).ž
https://bitcoincore.org/en/doc/0.16.0/rpc/network/setban/. Online;
Accessed: Nov 17, 2018.

[200] Y. Minsky, A. Trachtenberg, and R. Zippel, łSet reconciliation with nearly
optimal communication complexity,ž IEEE Transactions on Information
Theory, vol. 49, no. 9, pp. 2213ś2218, 2003.

[201] łminer.cpp.ž https:

//github.com/bitcoin/bitcoin/blob/master/src/miner.cpp#L321.
Online; Accessed: May 11, 2020.

[202] łtxmempool.h.ž
https://github.com/bitcoin/bitcoin/blob/master/src/txmempool.h,
2018.

[203] łstd::map.ž https://en.cppreference.com/w/cpp/container/map. Online;
Accessed: Sep 23, 2020.

[204] łnet.h.ž
https://github.com/bitcoin/bitcoin/blob/master/src/net.h#L50.
Online; Accessed: May 12, 2020.

[205] łbtcd.ž https://github.com/btcsuite/btcd. Online; Accessed: Sep 23,
2020.

[206] łBitcoin Knots.ž https://bitcoinknots.org/. Online; Accessed: Sep 23,
2020.

[207] łBitcoin Knots (source).ž https:

//github.com/bitcoinknots/bitcoin/tree/v0.20.1.knots20200815.
Online; Accessed: Sep 23, 2020.

[208] łLibbitcoin Node.ž https://github.com/libbitcoin/libbitcoin-node.
Online; Accessed: Sep 23, 2020.

[209] łbitcoinj.ž https://bitcoinj.org/. Online; Accessed: Sep 23, 2020.

173

https://www.spss-tutorials.com/pearson-correlation-coefficient/
https://bitcoin.org/en/developer-reference#remote-procedure-calls-rpcs
https://bitcoin.org/en/developer-reference#remote-procedure-calls-rpcs
https://bitcoincore.org/en/doc/0.16.0/rpc/network/setban/
https://github.com/bitcoin/bitcoin/blob/master/src/miner.cpp#L321
https://github.com/bitcoin/bitcoin/blob/master/src/miner.cpp#L321
https://github.com/bitcoin/bitcoin/blob/master/src/txmempool.h
https://en.cppreference.com/w/cpp/container/map
https://github.com/bitcoin/bitcoin/blob/master/src/net.h#L50
https://github.com/btcsuite/btcd
https://bitcoinknots.org/
https://github.com/bitcoinknots/bitcoin/tree/v0.20.1.knots20200815
https://github.com/bitcoinknots/bitcoin/tree/v0.20.1.knots20200815
https://github.com/libbitcoin/libbitcoin-node
https://bitcoinj.org/

[210] ł5 Bitcoin Core Alternatives That Don’t Fork the Blockchain.ž https:

//bitcoin.eu/bitcoin-core-alternatives-dont-fork-blockchain/.
Online; Accessed: Sep 23, 2020.

[211] an4s, łUnreachable code when checking for valid Merkle root in compact block
processing.ž
https://gitlab.com/bitcoinunlimited/BCHUnlimited/-/issues/2226.
Online; Accessed: May 21, 2021.

[212] łTransaction Size.ž https://bitcoinvisuals.com/chain-tx-size. Online;
Accessed: Oct 25, 2021.

[213] łMempool Summary.ž
https://explorer.bitcoinunlimited.info/mempool-summary. Online;
Accessed: Oct 25, 2021.

[214] C. Spearman, łThe Proof and Measurement of Association between Two
Things,ž The American Journal of Psychology, vol. 100, no. 3/4, pp. 441ś471,
1987.

[215] D. Zwillinger, CRC standard probability and statistics tables and formulae.
Boca Raton: Chapman & Hall/CRC, 2000.

[216] łscipy.stats.spearmanr.ž https://docs.scipy.org/doc/scipy/reference/g

enerated/scipy.stats.spearmanr.html. Online; Accessed: Oct 11, 2021.

[217] F. Wilcoxon, łIndividual Comparisons by Ranking Methods,ž Biometrics
Bulletin, vol. 1, no. 6, pp. 80ś83, 1945.

[218] W. W. LaMorte, łPH717 Module 9 - Correlation and Regression: Evaluating
Association Between Two Continuous Variables.ž https://sphweb.bumc.bu.e
du/otlt/MPH-Modules/PH717-QuantCore/PH717-Module9-Correlation-Re

gression/PH717-Module9-Correlation-Regression4.html. Online;
Accessed: May 14, 2021.

[219] D. Ron and A. Shamir, łQuantitative Analysis of the Full Bitcoin Transaction
Graph,ž in Financial Cryptography and Data Security (A.-R. Sadeghi, ed.),
(Berlin, Heidelberg), pp. 6ś24, Springer Berlin Heidelberg, 2013.

[220] M. Ober, S. Katzenbeisser, and K. Hamacher, łStructure and Anonymity of
the Bitcoin Transaction Graph,ž Future Internet, vol. 5, no. 2, pp. 237ś250,
2013.

[221] M. Fleder, M. S. Kester, and S. Pillai, łBitcoin Transaction Graph Analysis,ž
CoRR, vol. abs/1502.01657, 2015.

174

https://bitcoin.eu/bitcoin-core-alternatives-dont-fork-blockchain/
https://bitcoin.eu/bitcoin-core-alternatives-dont-fork-blockchain/
https://gitlab.com/bitcoinunlimited/BCHUnlimited/-/issues/2226
https://bitcoinvisuals.com/chain-tx-size
https://explorer.bitcoinunlimited.info/mempool-summary
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html
https://sphweb.bumc.bu.edu/otlt/MPH-Modules/PH717-QuantCore/PH717-Module9-Correlation-Regression/PH717-Module9-Correlation-Regression4.html
https://sphweb.bumc.bu.edu/otlt/MPH-Modules/PH717-QuantCore/PH717-Module9-Correlation-Regression/PH717-Module9-Correlation-Regression4.html
https://sphweb.bumc.bu.edu/otlt/MPH-Modules/PH717-QuantCore/PH717-Module9-Correlation-Regression/PH717-Module9-Correlation-Regression4.html

[222] G. Di Battista, V. Di Donato, M. Patrignani, M. Pizzonia, V. Roselli, and
R. Tamassia, łBitconeview: visualization of ŕows in the bitcoin transaction
graph,ž in 2015 IEEE Symposium on Visualization for Cyber Security
(VizSec), pp. 1ś8, 2015.

[223] M. Möser, R. Böhme, and D. Breuker, łAn inquiry into money laundering
tools in the Bitcoin ecosystem,ž in 2013 APWG eCrime Researchers Summit,
pp. 1ś14, 2013.

[224] A. Greaves and B. Au, łUsing the Bitcoin transaction graph to predict the
price of Bitcoin.ž
http://snap.stanford.edu/class/cs224w-2015/projects_2015/Using_t

he_Bitcoin_Transaction_Graph_to_Predict_the_Price_of_Bitcoin.pdf,
2015. Online; Accessed: Nov 27, 2021.

[225] D. McGinn, D. Birch, D. Akroyd, M. Molina-Solana, Y. Guo, and W. J.
Knottenbelt, łVisualizing dynamic Bitcoin transaction patterns,ž Big data,
vol. 4, no. 2, pp. 109ś119, 2016.

[226] E. Androulaki, G. O. Karame, M. Roeschlin, T. Scherer, and S. Capkun,
łEvaluating User Privacy in Bitcoin,ž in Financial Cryptography and Data
Security (A.-R. Sadeghi, ed.), (Berlin, Heidelberg), pp. 34ś51, Springer Berlin
Heidelberg, 2013.

[227] T. Ruffing and P. Moreno-Sanchez, łValueShuffle: Mixing Conődential
Transactions for Comprehensive Transaction Privacy in Bitcoin,ž in Financial
Cryptography and Data Security (M. Brenner, K. Rohloff, J. Bonneau,
A. Miller, P. Y. Ryan, V. Teague, A. Bracciali, M. Sala, F. Pintore, and
M. Jakobsson, eds.), (Cham), pp. 133ś154, Springer International Publishing,
2017.

[228] J. Herrera-Joancomartí and C. Pérez-Solà, łPrivacy in Bitcoin Transactions:
New Challenges from Blockchain Scalability Solutions,ž in Modeling Decisions
for Artificial Intelligence (V. Torra, Y. Narukawa, G. Navarro-Arribas, and
C. Yañez, eds.), (Cham), pp. 26ś44, Springer International Publishing, 2016.

[229] Q. Wang, B. Qin, J. Hu, and F. Xiao, łPreserving transaction privacy in
bitcoin,ž Future Generation Computer Systems, vol. 107, pp. 793ś804, 2020.

[230] Y. Liu, X. Liu, C. Tang, J. Wang, and L. Zhang, łUnlinkable Coin Mixing
Scheme for Transaction Privacy Enhancement of Bitcoin,ž IEEE Access,
vol. 6, pp. 23261ś23270, 2018.

[231] S. Meiklejohn and R. Mercer, łMöbius: Trustless Tumbling for Transaction
Privacy,ž Proceedings on Privacy Enhancing Technologies, vol. 2018, no. 2,
pp. 105ś121, 2018.

175

http://snap.stanford.edu/class/cs224w-2015/projects_2015/Using_the_Bitcoin_Transaction_Graph_to_Predict_the_Price_of_Bitcoin.pdf
http://snap.stanford.edu/class/cs224w-2015/projects_2015/Using_the_Bitcoin_Transaction_Graph_to_Predict_the_Price_of_Bitcoin.pdf

[232] Y. Kawase and S. Kasahara, łTransaction-Conőrmation Time for Bitcoin: A
Queueing Analytical Approach to Blockchain Mechanism,ž in Queueing
Theory and Network Applications (W. Yue, Q.-L. Li, S. Jin, and Z. Ma, eds.),
(Cham), pp. 75ś88, Springer International Publishing, 2017.

[233] Y. Sompolinsky and A. Zohar, łAccelerating Bitcoin’s Transaction Processing.
Fast Money Grows on Trees, Not Chains.,ž IACR Cryptology ePrint Archive,
vol. 2013, p. 881, 2013.

[234] J. K. Shoji Kasahara, łEffect of Bitcoin fee on transaction-conőrmation
process,ž Journal of Industrial & Management Optimization, vol. 15, no. 1,
pp. 365ś386, 2019.

[235] Y. Zhu, R. Guo, G. Gan, and W.-T. Tsai, łInteractive Incontestable Signature
for Transactions Conőrmation in Bitcoin Blockchain,ž in 2016 IEEE 40th
Annual Computer Software and Applications Conference (COMPSAC), vol. 1,
pp. 443ś448, 2016.

[236] łBEST PAPER, RUNNER UP AND TNSM INVITATIONS.ž https:

//icbc2020.ieee-icbc.org/best-paper-runner-and-tnsm-inviations,
2020. Online; Accessed: Nov 27, 2021.

[237] łbitcoin-releases.ž
https://github.com/nislab/bitcoin-releases/tree/icbc2020. Online;
Accessed: Feb 13, 2020.

[238] łA Practical Guide To Accidental Low Fee Transactions.ž
https://hackernoon.com/holy-cow-i-sent-a-bitcoin-transaction-wit

h-too-low-fees-are-my-coins-lost-forever-7a865e2e45ba. Online;
Accessed: Dec 3, 2019.

[239] łIs there any max limit of a mempool?.ž https://bitcointalk.org/index.

php?topic=1714006.msg17171748#msg17171748. Online; Accessed: Dec 5,
2019.

[240] S. Jiang and J. Wu, łBitcoin Mining with transaction fees: a game on the
block size,ž in 2019 IEEE International Conference on Blockchain
(Blockchain), pp. 107ś115, IEEE, 2019.

[241] M. A. Imtiaz, D. Starobinski, A. Trachtenberg, and N. Younis, łChurn in the
Bitcoin Network,ž IEEE Transactions on Network and Service Management,
vol. 18, no. 2, pp. 1598ś1615, 2021.

[242] łbitcoin-logs.ž https://github.com/nislab/bitcoin-logs/tree/icbc2020.
Online; Accessed: Feb 13, 2020.

176

https://icbc2020.ieee-icbc.org/best-paper-runner-and-tnsm-inviations
https://icbc2020.ieee-icbc.org/best-paper-runner-and-tnsm-inviations
https://github.com/nislab/bitcoin-releases/tree/icbc2020
https://hackernoon.com/holy-cow-i-sent-a-bitcoin-transaction-with-too-low-fees-are-my-coins-lost-forever-7a865e2e45ba
https://hackernoon.com/holy-cow-i-sent-a-bitcoin-transaction-with-too-low-fees-are-my-coins-lost-forever-7a865e2e45ba
https://bitcointalk.org/index.php?topic=1714006.msg17171748#msg17171748
https://bitcointalk.org/index.php?topic=1714006.msg17171748#msg17171748
https://github.com/nislab/bitcoin-logs/tree/icbc2020

[243] łProtocol documentation (inv).ž
https://en.bitcoin.it/wiki/Protocol_documentation#inv. Online;
Accessed: Dec 3, 2019.

[244] łProtocol documentation (getdata).ž
https://en.bitcoin.it/wiki/Protocol_documentation#getdata. Online;
Accessed: Dec 3, 2019.

[245] łstd::map::erase.ž
http://www.cplusplus.com/reference/map/map/emplace. Online;
Accessed: Dec 4, 2019.

[246] łstd::map::count.ž
http://www.cplusplus.com/reference/map/map/count/. Online; Accessed:
Dec 4, 2019.

[247] łstd::map::erase.ž
http://www.cplusplus.com/reference/map/map/erase/. Online; Accessed:
Dec 4, 2019.

[248] łExploring std::shared_ptr.ž https://shaharmike.com/cpp/shared-ptr/.
Online; Accessed: Dec 5, 2019.

[249] łPackage relay.ž https://bitcoinops.org/en/topics/package-relay/.
Online; Accessed: Nov 25, 2020.

[250] łPackage relay design questions.ž
https://github.com/bitcoin/bitcoin/issues/14895. Online; Accessed:
Nov 25, 2020.

[251] łTransaction package relay.ž https:

//gist.github.com/sdaftuar/8756699bfcad4d3806ba9f3396d4e66a.
Online; Accessed: Dec 4, 2020.

[252] J. Poon and T. Dryja, łThe Bitcoin Lightning Network: Scalable Off-Chain
Instant Payments.ž
https://lightning.network/lightning-network-paper.pdf, Jan 2016.
Online; Accessed: Nov 22, 2021.

[253] V. Buterin, łSharding-FAQs.ž https://eth.wiki/sharding/Sharding-FAQs.
Online; Accessed: Nov 22, 2021.

[254] J. Poon and V. Buterin, łPlasma: Scalable Autonomous Smart Contracts.ž
https://plasma.io/plasma.pdf, Aug 2017. Online; Accessed: Nov 22, 2021.

177

https://en.bitcoin.it/wiki/Protocol_documentation#inv
https://en.bitcoin.it/wiki/Protocol_documentation#getdata
http://www.cplusplus.com/reference/map/map/emplace
http://www.cplusplus.com/reference/map/map/count/
http://www.cplusplus.com/reference/map/map/erase/
https://shaharmike.com/cpp/shared-ptr/
https://bitcoinops.org/en/topics/package-relay/
https://github.com/bitcoin/bitcoin/issues/14895
https://gist.github.com/sdaftuar/8756699bfcad4d3806ba9f3396d4e66a
https://gist.github.com/sdaftuar/8756699bfcad4d3806ba9f3396d4e66a
https://lightning.network/lightning-network-paper.pdf
https://eth.wiki/sharding/Sharding-FAQs
https://plasma.io/plasma.pdf

[255] G. Malavolta, P. Moreno-Sanchez, A. Kate, M. Maffei, and S. Ravi,
łConcurrency and privacy with payment-channel networks,ž in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’17, (New York, NY, USA), p. 455ś471, Association for
Computing Machinery, 2017.

[256] L. Gudgeon, P. Moreno-Sanchez, S. Roos, P. McCorry, and A. Gervais, łSoK:
Layer-Two Blockchain Protocols,ž in Financial Cryptography and Data
Security, (Cham), pp. 201ś226, Springer International Publishing, 2020.

178

Curriculum Vitae

Muhammad Anas Imtiaz
anasimtiaz.pk �

me@anasimtiaz.pk #

ï maimtiaz

I +1 (617) 371-7268

e d u c a t i o n

M.S./Ph.D. Computer Engineering
Boston University, Boston MA, USA

(expected)

January, 2022

B.Sc. Computer Engineering
National University of Computer &
Emerging Sciences, Lahore, Pakistan

(conferred)

August, 2014

p r o f e s s i o n a l e x p e r i e n c e s

Doctoral Research Fellow
Boston University, Boston MA, USA

September, 2017
to

Present

Senior Software Development Engineer
Mentor Graphics, Lahore, Pakistan

August, 2016
to

July, 2017

Software Development Engineer
Mentor Graphics, Lahore, Pakistan

December, 2014
to

July, 2016

a w a r d s

Best Paper Award
IEEE International Conference on
Blockchain and Cryptocurrency

May, 2020

Cum Laude & Silver Medal
National University of Computer &
Emerging Sciences, Lahore, Pakistan

August, 2014

179

https://anasimtiaz.pk
mailto:me@anasimtiaz.pk
https://www.linkedin.com/in/maimtiaz/
tel:+16173717268

	Contents
	List of Tables
	List of Figures
	Introduction
	Research questions
	Contributions
	Takeaways
	Road map

	Background and related work
	Preliminaries
	Transaction
	Block
	Miner
	Blockchain

	Bitcoin and Bitcoin Unlimited
	Bitcoin
	Bitcoin Unlimited
	Data structures
	 Bloom filter
	 Invertible Bloom lookup table

	Block relay protocols
	 Default (normal) block relay
	 Compact block relay
	 Graphene block relay

	Orphan transactions
	Related work
	Measurement tools
	Block propagation and churn
	Orphan transactions
	Summary

	Churn in the Bitcoin network
	Churn characterization
	Obtaining and processing data
	Churn rate
	Statistical fitting of session lengths
	 Up sessions
	 Down sessions

	Subnet analysis
	Geographic analyses

	Experimental analysis of compact block performance with churn
	Data collection mechanism
	Experimental setup
	Statistics on compact blocks
	Statistics on missing transactions
	Statistics on propagation delay

	MempoolSync
	Design of MempoolSync
	Experimental evaluation of MempoolSync in the presence of churn
	Statistics on compact blocks
	Statistics on missing transactions
	Statistics on propagation delay

	Discussions and limitations
	 Characterization of churn
	 Sampled session lengths
	 MempoolSync

	Summary

	Empirical comparison of block relay protocols for blockchains
	Evaluation of block relay protocols
	Data collection mechanism
	Experimental setup
	Statistics on the propagation delay of blocks
	Statistics on the communication size per block
	Correlation between propagation delay and communication per block

	Insights into block relay protocols
	Graphene in depth
	Temporal analysis of the Graphene block relay protocol
	Size of first message across block relay protocols
	On the usefulness of additional transactions in the compact block relay protocol

	Summary

	Orphan Transactions in the Bitcoin Network
	Characterization of orphan transactions
	Measurement setup
	Number of parents
	Transaction fee of missing parents
	Transaction size of missing parents
	Relating transaction fee to size of missing parents
	Orphan transactions in blocks
	Delay in receiving missing parents from peers
	Impact of transaction fee

	Comparison of orphan transaction behavior with different orphan pool parameters
	Measurement setup
	Removal of orphan transactions from orphan pool
	Addition of orphan transactions to orphan pool
	Network overhead
	Performance overhead
	 CPU overhead
	 Memory overhead

	Varying orphan transaction timeouts

	Orphan transactions in nodes joining the network
	Measurement setup
	Fraction of orphan transactions
	Arrival times of orphan transactions
	Removal of orphan transactions from orphan pool

	Discussions and limitations
	 Peer selection in measurement nodes
	 Performance impact of orphan transactions
	 Ideas for future development

	Summary

	Conclusions and future work
	 Summary of contributions and findings
	 Future work directions
	 Concluding remarks

	Explanation of log-to-file system
	Motivation and challenges
	Design of the system
	Usage of the system

	Bibliography
	Curriculum Vitae

